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Executive Summary 

The report presents the comprehensive development and analysis of the DySAM system, designed to 

enhance driver monitoring and situation awareness assessment. DySAM (Dynamic Situation 

Awareness Model) is a driver monitoring system that leverages sensor data to continuously evaluate 

a driver's situation awareness (SA) in real-time. The system is expected to help improving safety and 

optimizing human-machine interaction within autonomous vehicles or advanced driver-assistance 

systems (ADAS). 

The report begins with an overview of the DySAM system and its connection to driver monitoring and 

situation awareness evaluation. By providing continuous SA assessments derived from sensor 

information, DySAM aims to enhance safety and driver performance in a wide range of driving 

scenarios. 

Chapter 2 delves into the architecture and components of the DySAM system. It outlines three major 

components: the feature processing pipeline, the inference engine, and the probabilistic model. The 

feature processing pipeline collects sensor data and extracts indicators for SA assessment. The 

inference engine utilizes a probabilistic model to infer probability distributions over current SA based 

on the collected evidence. 

Afterwards, chapter 3 details the datasets and annotations used for training and validating the DySAM 

models. It describes the experimental setup, including trials for different SAE (Society of Automotive 

Engineers) levels and non-driving related tasks. It explains how the data was divided into training and 

test sets for model development and evaluation. 

Chapter 4 focuses on a detailed description of the implementation of the feature processing pipeline 

(FCP), which acts as an interface between the driving simulator and the DySAM system. The FCP 

collects sensor data, processes it into SA indicators, and buffers recent sensor information during 

runtime. 

Finally, chapter 5 elaborates on the modeling of situation awareness using DySAM. It introduces two 

main types of models: NDRT (Non-Driving Related Task) models and SAGAT (Situation Awareness 

Global Assessment Technique) Score models. NDRT models assess situation awareness based on 

behavioral patterns and SA indicators, while SAGAT Score models evaluate SA using observed 

behaviors and SAGAT scores. The NDRT models are validated via the classification quality for the 

currently carried out NDRT. The SAGAT score models are validated via the prediction of the recorded 

SAGAT score. The chapter also discusses latent pattern discovery and model selection strategies. 

In conclusion, the report underscores the significance of the DySAM system in advancing driver 

monitoring and situation awareness assessment. By leveraging sensor data and sophisticated models, 

DySAM offers valuable insights into driver behavior, which can help to enhance safety in various driving 

scenarios. Future research may focus on refining model architectures, optimizing feature selection, 

and integrating DySAM into real-world applications to further improve driver assistance systems and 

autonomous vehicles.   
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Zusammenfassung 

Der Bericht stellt detailliert die Entwicklung und Analyse des DySAM-Systems zur verbesserten 

Fahrerüberwachung und insbesondere Situationsbewusstseinsbewertung vor. DySAM (Dynamic 

Situation Awareness Model) ist ein Fahrerüberwachungssystem, das Sensordaten nutzt, um das 

Situationsbewusstsein (SA) eines Fahrers kontinuierlich in Echtzeit zu bewerten. Das System soll dazu 

beitragen, die Sicherheit zu verbessern und die Mensch-Maschine-Interaktion in autonomen 

Fahrzeugen oder fortschrittlichen Fahrerassistenzsystemen (ADAS) zu optimieren. 

Der Bericht beginnt mit einem Überblick über das DySAM-System. Durch die Bereitstellung 

kontinuierlicher, aus Sensorinformationen abgeleiteter SA-Bewertungen zielt das DySAM-System 

darauf ab, die Sicherheit in einer Vielzahl von unterschiedlichen Fahrszenarien zu erhöhen. 

Kapitel 2 befasst sich mit der Architektur des DySAM-Systems. Es werden drei Hauptkomponenten 

beschrieben: die Feature-Processing-Pipeline, die Inferenz-Engine und das probabilistische Modell. Die 

Feature-Processing-Pipeline sammelt Sensordaten und extrahiert Indikatoren für die SA-Bewertung. 

Die Inferenz-Engine nutzt ein probabilistisches Modell, um auf der Grundlage der gesammelten 

Indikatoren Wahrscheinlichkeitsverteilungen über das aktuelle Situationsbewusstsein abzuleiten. 

Anschließend werden in Kapitel 3 die Datensätze und die Datenannotation beschrieben, die zum 

Training und zur Validierung der DySAM-Modelle verwendet werden. Es beschreibt den Versuchs-

aufbau für verschiedene SAE-Automationsstufen und nicht fahrbezogener Aufgaben. Es erklärt, wie 

die Daten für die Modellentwicklung und -bewertung in Trainings- und Testsätze aufgeteilt wurden. 

Kapitel 4 konzentriert sich auf eine detaillierte Beschreibung der Implementierung der Feature 

Processing Pipeline (FCP), die als Schnittstelle zwischen dem Fahrsimulator und dem DySAM-System 

fungiert. Die FCP sammelt Sensordaten, verarbeitet sie zu SA-Indikatoren und puffert aktuelle 

Sensorinformationen während der Laufzeit. 

Abschließend wird in Kapitel 5 auf die Modellierung des Situationsbewusstseins mithilfe von DySAM 

eingegangen. Es werden zwei Haupttypen von Modellen vorgestellt: NDRT-Modelle (Non-Driving 

Related Task) und SAGAT-Score-Modelle (Situation Awareness Global Assessment Technique). NDRT-

Modelle bewerten das Situationsbewusstsein anhand von Verhaltensmustern und SA-Indikatoren, 

während SAGAT-Score-Modelle SA anhand beobachteter Verhaltensweisen und SAGAT-Scores 

bewerten. Die Validierung der NDRT-Modelle erfolgt über die Klassifizierungsgüte einer aktuell 

durchgeführten NDRT und die der SAGAT-Score-Modelle über die Vorhersage des erfassten SAGAT 

Scores. Zudem werden in diesem Kapitel auch Strategien zur Entdeckung latenter Muster erörtert, 

sowie Strategien für die Auswahl von Modellvarianten diskutiert. 

Der Bericht unterstreicht die Bedeutung des DySAM-Systems für die Weiterentwicklung von 

Fahrerüberwachungssystemen und der Situationsbewusstseinsbewertung. Durch die Nutzung von 

Sensordaten und hochentwickelten Modellen bietet DySAM wertvolle Einblicke in das 

Fahrerverhalten, die dazu beitragen können die Sicherheit in verschiedenen Fahrszenarien zu 

bewerten. Zukünftige Forschung könnte sich auf die Verfeinerung von Modellarchitekturen, die 

Optimierung der Indikatorauswahl und die Integration von DySAM in reale Anwendungen 

konzentrieren, um Fahrerassistenzsysteme und autonome Fahrzeuge weiter zu verbessern.
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Abbreviations 

2TBN Two time-slice Bayesian Network 

AUC Area under curve 

BN Bayesian Network 

BIC Bayesian Information Criterion 

CPD Conditional probability distribution (/ density function) 

DAG Directed acyclic graph 

DBIC Discriminative Bayesian Information Criterion 

DBN Dynamic Bayesian Network 

EM Expectation-Maximization 

FCP Feature processing pipeline 

FPR False positive rate 

JPD Joint probability distribution (/density function) 

MAP Maximum a posteriori 

MEMM Maximum entropy Markov model 

MLE Maximum likelihood estimate 

NDRT Non-driving-related task 

NIW Normal Inverse Wishart 

PDF Probability density function 

PMF Probability mass function 

ROC Receiver Operating Characteristic 

SA Situation Awareness 

SAGAT Situation Awareness Global Assessment Technique 

SART Situation Awareness Rating Technique 

SURT Surrogate Reference Task 

TPR True positive rate 

VBEM Variational Bayes Expectation-Maximization 
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1 Introduction 

According to SAE International (2021), drivers need to monitor the road and take over the driving task 

facing critical events at SAE Level 2. From SAE Level 3, drivers don’t need to drive and monitor the 

traffic situation and only intervene when the automated system requests. Currently, many car 

manufacturers have introduced SAE Level 2 driving automation systems to the market, such as Telsa’s 

Autopilot, Audi’s Traffic Jam Assist, and BMW’s Driving Assistant Plus (Teoh, 2020). Concerning SAE 

Level 3 driving automation system, Honda have released the first vehicle equipped with certified level 

3 self-driving feature, namely “Traffic Jam Pilot” in 2021. Nevertheless, within these automation levels, 

humans still play a central role as system monitors at SAE Level 2 or as fallback-ready users at SAE Level 

3 and are necessary for ensuring safety. For this purpose, it must be ensured that drivers can 

adequately take control of the vehicle, for example, in safety-critical situations or at system limits. For 

this to happen, drivers must have sufficient situational awareness (SA) when they need to intervene in 

the driving task. It requires an adequate perception of the elements in the environment, an 

understanding of their meaning, and a projection to the near future. (Endsley, 1995). This goes clearly 

beyond simple eye-tracking and can be essential for future driver monitoring in SAE Level 2 and Level 

3 automation. The aim of the project “DySAM” was to develop and validate an algorithm for dynamic 

online assessment of SA in the context of SAE Level 2 / Level 3 vehicle automation.  

 

1.1 Requirements for maintaining and building situational awareness at SAE Level 2 & 

Level 3 

The already partially available assistance systems of driving automation introduce new challenges for 

maintaining and building situational awareness. These requirements are especially related to Level 2 

and Level 3 driving automation according to the SAE classification (SAE, 2021). 

 

Level 2 driving automation requires continuous monitoring of the system by the driver. Regarding the 

hand position to be adopted, many systems prescribe a "hands-on" (wheel); others explicitly allow a 

"hands-free" operation. In both cases, the driver's monitoring task requires sufficient situational 

awareness to adequately assess the vehicle's behavior. HMI approaches, often combined with driver 

monitoring, can assist the driver in maintaining situational awareness. This idea requires that 

situational awareness also be detectable or quantifiable during system use. 

 

With Level 3 automation, the monitoring requirement is no longer required. Non-driving-related tasks 

can be allowed during automated driving within certain limits. Facing a takeover request, however, 

the driver must take over control of the vehicle and make all associated decisions within a certain 

takeover time budget. For this purpose, it is necessary to build situational awareness within a 

comparatively short time (e.g., 5-10 seconds), to continue driving safely. It would make sense to hand 

over the automation to the driver only after modelling the current situation awareness to ensure that 

it is sufficiently available. Furthermore, this modelling allows supporting the building of situation 

awareness by a suitable HMI concept. 
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2 Overview of the project 

2.1 Project goal  

The project's central objective is to develop and validate a measurement concept that can dynamically 

and online assess the current driver’s situation awareness at SAE Level 2 or SAE Level 3 or predict it 

(especially in takeover situations). This will allow the design of future concepts of driver-vehicle 

interaction for SAE L2 and L3 systems that can adaptively respond to the instantaneous situation 

awareness state of the driver, e.g., to ensure adequate monitoring of an SAE Level 2 automation or 

adequate intervention at the system boundary for a SAE Level 3 automation. 

2.2 Approach 

Building adequate situation awareness requires the coordinated interaction of several cognitive 

processes. The generation and maintenance of situation awareness is a complex process for which 

there is no single, non-intrusive, real-time measurable variable that allows reliable assessment of 

situation awareness across a wide range of driving situations. What is needed, therefore, is a model 

that accounts for a range of measurable variables that correlate with the establishment and 

maintenance of situational awareness to enable a robust assessment. In addition, the 

parameterization of the model must both make do with limited or summarized data from the scientific 

literature, but also allow for the use of detailed time series of sensor data that may be noisy. This also 

means that the modeling language must allow for both simple manual model specification based on 

literature results and machine learning based on time series data, as well as a combination of both. In 

addition, human behavior generally exhibits high variability. Therefore, when modeling human 

behavior, it is typically assumed that confounding factors not explicitly accounted for by the model can 

have a significant impact on model performance. This uncertainty, as well as the uncertainty arising 

from sensor inaccuracies in the physiological measurement procedures, must be taken into account 

when choosing the modeling method. 

For the aforementioned requirements, Dynamic Bayesian Networks (DBNs) - a model class of 

probabilistic graphical models (Koller & Friedman, 2009) - are particularly suitable. DBNs allow 

modeling discrete-time dynamic processes under uncertainty. To do so, the complex joint probability 

distribution of a time series of random variables is factorized into a product of simpler parameterizable 

probability distributions based on statistical and/or causal relationships between the variables. This 

factorization can be visually represented as a direct acyclic graph. Fully parameterized, a DBN can be 

used to compute probability distributions over (subsets of) non-observable variable(s) given evidence 

of all observable variables. These DBNs will be used in this project for dynamic, real-time modeling of 

situation awareness. 

2.3 Overview of work packages 

The DySAM project was comprised of three work packages (WPs). WP1 focused on the theoretical 

concept of situation awareness (SA) in the context of automated driving at SAE Level 2 and Level 3, the 

results of which are documented in section 3. In WP2, the concept for modeling and measuring 

situation awareness was defined, including the assessment of different measurement principles and 

the selection of a suitable method (WP 2.1), development and implementation of an algorithm for 

online assessment of  based on the selected measurement principle (WP 2.2), and planning and 

implementation of a driving simulator study to validate this modeling on the basis of situations or 
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usage scenarios known to influence SA (WP 2.3). The results of W2 are documented in sections 4 and 

5. Lastly, WP3 focused on the documentation of the project results, cumulating in this report. 

3 Theoretical concept of Situation Awareness 

The theoretical concept of situation awareness identifies not only the psychological processes 

underlying situation awareness but also their observable correlates (e.g., specific parameters of gaze 

behavior, hand and body posture, etc.), which can serve as candidates for possible measures of 

situation awareness. In addition, the different central functions of situation awareness for automated 

driving are analyzed on SAE L2 and on SAE L3. For this purpose, a task analysis is used to analyze the 

main tasks involved in driving with SAE L2 and L3 systems, e.g., monitoring the system within and at 

the system boundaries or taking control in SAE L3 systems after a takeover request.  

3.1 Task analysis 

The task analysis has been conducted separately for SAE Level 2 and SAE Level 3. The objectives 

associated with the tasks, situation, the decisions that must be made to achieve the objectives, and 

the information necessary to make those decisions are considered (see Figure 1).  

At SAE Level 2, a driver’s task is to continuously supervise the traffic environment, to achieve the goal 

of maintaining the situation awareness to ensure traffic safety. When a system reaches its limitation, 

the driver needs to check the system performance and also the HMI to make decisions. If the driver 

decides to take over the control from the SAE Level 2 system, a take-over action will be executed via 

putting hands on the steering wheel or using gas/brake pedal. Giving an example, at 8:15 in the 

morning, David drives 6.5 km stretch of urban roadway with a speed limit of 50 km/h to his company. 

After 2 minutes, he activates the ACC system. After 3 minutes of turning to the left, a cyclist appears 

in front of David’s car, but the ACC is not able to recognize the relatively small bicycle due to the sensor 

limitation and keep gradually close to the cyclist. At the same time, a visual warning is shown in the 

speedometer. After receiving these warnings, David needs to have a look at the HMI and make 

decisions, and take over control as soon as possible. 

At SAE Level 3, driver doesn’t need to supervise the environment, but needs to intervene when the 

system issues a "request to intervene (RtI)" due to the system error or system limitation. For this, 

driver is actually called "fallback-ready" user and needs to build situation awareness on time to be able 

to take over the control when needed. When a driver is busy, the NDRT and a takeover request come 

due to the system limitation in the current scenario, the driver needs to observe the environment first 

before taking over the control from the SAE Level 3 system. If a driver decides to take over, a take-over 

action will be executed via putting hands on the steering wheel or using gas/brake pedal. For instance, 

at 8:15 in the morning, Fiona drives a 30 km stretch of highway at 130 km/h limit to his company. At 

the beginning, she drives manually. After 2 minutes, she activates the automation mode of her SAE 

Level 3 system and begins to watch YouTube videos. After 8 minutes, a broken vehicle appears 

suddenly in front of Fiona’s car and the system reaches its boundary. Hence, a TOR is shown to Fiona 

via visual and acoustic warnings. As Fiona is busy with watching videos and not aware of the 

surroundings, she needs to check the traffic situations and make decisions. In the end, she takes over 

the control by putting her hands on the steering wheel and her feet on the gas pedal. 
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The results of task analysis at SAE Level 2 and Level 3 can be relevant for developing driving scenarios 

for the validation study in WP 2.3. 

 

 

Figure 1: Task analysis for SAE Level 2 and SAE Level 3 associated with task, goal, scenario, information, decision and action 
(SA: situation awareness; HMI: human- machine interface; NDRT: non-driving related task; TOR: take-over request). 

3.2 Psychological processes underlying situation awareness 

Oriented on Endsley's situation awareness model (see Figure 2), the relevant psychological processes 

underlying situation awareness including perceiving the relevant information from the environment, 

interpreting the perceived information, making decisions and executing actions. The corresponding 

components (task, goal, situation, information, decision and action) involved in the task analysis at SAE 

Level 2 and SAE Level 3 can be allocated to the corresponding psychological process. Based on the task 

analysis and psychological process, some metrics that can be considered measures of situation 

awareness can be retrieved, especially while identifying the necessary information needed for SAE 

Level 2 and Level 3. For example, when drivers need to check the traffic environment or the HMI, their 

gaze behaviors, hand and body postures etc. can serve as candidates for measuring situation 

awareness. However, the retrieved metrics in this way are limited and therefore a systematic review 

on the relevant indicators that can measure situation awareness is necessary. 
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Figure 2: Situation awareness model. 

3.3 Metrics for measuring situation awareness 

An analysis of current research literature on situational awareness, particularly in the context of 

automated driving has been conducted on SAE Level 2 and Level 3. Relevant channels of publication 

of scientific papers (journals such as Transportation Research Part F: Traffic and Transport Psychology, 

Accident Analysis & Prevention, Human Factors, Safety Science, Ergonomics, Theoretical Issues in 

Ergonomics Science, etc., as well as proceedings of relevant international meetings, such as 

International Annual Meeting HFES, Automotive UI, CHI, etc.) has been searched. We first defined the 

inclusion criteria for the literature review, which should include publications that measure situation 

awareness or model situation awareness art SAE Level 2 and SAE Level 3. In addition, a review paper 

“Physiological Measurements of Situation Awareness: A Systematic Review” by Zhang et al. (2023) and 

its corresponding reference papers are used to guide the literature review. A total of 19 publications 

were identified after systematic analysis by domain experts. The associated indicators 1for measuring 

situation awareness with their assigned categories can be seen in Figure 3. 

 
1 The list containing relevant publications and the descriptions of metrics has been submitted to FAT in the first 
project period. 
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Figure 3: Categories for indicators of situational awareness. 

In order to select representative indicators that can dynamically measure situation awareness, three 

categories of criteria have been considered. Firstly, the measurement-theoretical criteria, such as 

reliability, validity, sensitivity, specificity, accuracy have been taken into account. Reliability refers to 

the consistency of a measure (whether the results can be reproduced under the same conditions). 

Validity refers to the accuracy of a measure (whether the results really do represent what they are 

supposed to measure). Sensitivity and specificity mathematically describe the accuracy of a test which 

reports the presence or absence of a condition: Sensitivity (true positive rate) refers to the probability 

of a positive test, conditioned on truly being positive; specificity (true negative rate) refers to the 

probability of a negative test, conditioned on truly being negative. Accuracy refers to how close a 

measurement is to the true value. Each criterion in this category has been set up with three levels: 

low, medium, and high. After checking in the literature and discussing with domain experts, indicators 

shown in Figure 3 were filled with the levels for these theoretical criteria respectively. Only the 

indicators labelled with at least medium level of these criteria are further considered for modelling 

situation awareness. Secondly, the criteria regarding modeling situation awareness have been used, 

such as real-time capability, scenario (in)dependence, operationalizability, relevance/suitability for 

predicting SA. For this category of criterion, indicators should not require knowledge about the full 

driving session (real-time capability) and don’t require specific knowledge about the environment or 

context (scenario (in)dependence). Knowledge about the environment and driving context would 

require a set of suitable vehicle sensors and an interpretation of the driving context with respect to 

SA. These aspects would largely increase the system complexity. In addition, indicators related to time 

intervals must be implementable via sliding windows (operationalizability) and relevant to predict 

situation awareness (relevance/suitability for predicting SA).  At last, statistical significance test and 

priority of indicators have also been considered. The indicators that have significant influence on 

situation awareness empirically are considered. Also, indicators that have priority in predicting 

situation awareness are selected, such as pupil diameter, monitoring frequency, saccade frequency 

(Zhou, Yang, & De Winter, 2021).  After considering these criteria and discussing with domain- experts, 

eight specific indicators have been suggested: Pupil diameter, blink frequency, glance duration, 
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monitoring frequency, saccade frequency, yaw movement of head, heart rate variability, and hands 

on detection. In the following, the definitions provided in the respective literature are provided. For 

the practical utilization of these indicators in DySAM, we occasionally rely on alternative definitions, 

better suited for the scenarios and use cases addressed in DySAM (c.f., Section 5.1.3) 

• Pupil diameter is defined as the average pupil size in each condition in relation to the average 

pupil size during the entire experiment in mm, which can indicate changes in a person’s 

cognitive workload (Klingner, Kumar, & Hanrahan, 2008). 

• Blink frequency is measured in numbers per minute, and the eyelid closed for at least 80 ms 

for the movement can be considered as a blink (Faure, Lobjois, & Benguigui, 2016). 

• Glance duration is the average time in seconds spent in the windshield area within one glance, 

which is positively correlated with situation awareness (Zhang, et al., 2023). 

• Monitoring frequency is defined as the number of glances on AOIs / duration section [1/s] and 

can be considered as an indicator for attentional shifts (Kunze, Summerskill, Marshall, & 

Filtness, 2018). 

• Saccade frequency describes the number of rapid eye movements between several fixations, 

in times per minute (Law et al., 2019), which acts as a potential indicator for attention shifts 

during visual search and scanning  (Eriksson & Stanton, 2017). 

• Heart rate variability is measured using standard deviation of normal-to-normal RR intervals 

(SDNN) in ms, which is negatively correlated with situation awareness  (Sun, Wanyan, Wu, & 

Zhuang, 2017).    

• Yaw rate is defined as the mean side rotation rate of the head [degree/s]), which can 

potentially indicate whether a driver is more situationally aware or unaware  (Schewe, Cheng, 

Hafner, Sester, & Vollrath, 2019).    

• Hands-on detection can measure drivers’ attention, as people tend to position their hands 

differently or vary their grip force depending on how attentive they are  (Morando, Gershon, 

& Mehler, 2021). 

These metrics are associated with the perception level and interpretation level of SA underlying the 

psychological process. Based on these, a theoretical concept of situational awareness in the context of 

automated driving on SAE L2 and L3 has been created and defined.  

4 Data collection and validation study 

To validate the models created in DySAM, data sets are required that not only contain the sensor data 

for the models, but also annotations about the driver's current situational awareness. For this purpose, 

validation studies were carried out in the project. The general technical structure of the DySAM system 

is described below, as it was also used for the validation studies. This is followed by a description of 

the study implementation and data recording, as well as an explanation of the validation approach. 
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4.1 The DySAM system 

 

Figure 4: Overview of the DySAM system. 

The DySAM system is conceptualized as a driver monitoring system that continuously provides 

assessments about the driver’s situation awareness derived from sensor information about the driver. 

An overview of the system as implemented in the project is shown in Figure 4. The system is comprised 

of three major components: a feature processing pipeline, an inference engine, and a model. The 

feature processing pipeline collects the high-frequency sensor information provided by a driving 

simulator and processes them into a set of indicators or features to be used for assessing the situation 

awareness. The static driving simulator has a 190° viewing area and is equipped with a two-seater 

mock-up with a flexible interior. Three projectors (1920 px x 1080 px each, 5760 px x 1080 px in total) 

fill three screens (3.3 m x 2.1 m) for the front and side view. The rear view is generated by three screens 

at the positions of the rear-view mirror and the two side mirrors (each 7" with 800 x 400 px; 16:9). To 

simulate the traffic environment, the simulation software SILAB simulation software is used to 

simulate the traffic environment. The remote eye tracking system SmartEyePro, which uses four 

cameras to record the head and eye movements of test subjects at up to 120 fps, is integrated into the 

simulator and allows the exact recording of gaze behavior with high temporal resolution without 

affecting the test subject. In addition, 14 sensors implemented in SILAB via MQTT server are placed 

evenly inside the steering wheel enables the measurement of hand detection. The model is a 

probabilistic (graphical) model, whose structure and parameters can be configured via specification 

files. Every 100ms, the inference engine uses the model to infer probability distributions over the 

current situation awareness given the current evidence of the indicators provided by the feature 

processing pipeline. The output of the inference engine can then be provided to any consumer, e.g., 

to trigger interaction strategies or HMI output. 

4.2 Data Collection 

The data required for the parametrization and validation of the DySAM system, were collected in a 

validation experiment that was conducted in the driving simulator at Ulm University. A total of 37 valid 

samples (27 female, 10 male), with an average age of 23 years (SD = 4.95), passed the quality criteria 

and could be further processed.  
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4.2.1 Design 

As a dependent variable, situation awareness was assessed in terms of gaze behavior including 

monitoring frequency, saccades frequency, mean pupil diameter, blink frequency and glance duration, 

head movement, as well as hand position. We manipulated the level of Automation (L2, L3) as a within-

subjects-factor and non-driving related task (NDRT; none, auditory, visual) as a between-subjects-

factor in a 2 x 3 mixed design. The participants were randomly assigned to the conditions. In Level 2 

automated driving, the subject had to constantly monitor the situation and take control or reactivate 

the automation at their own discretion. Furthermore, they were not allowed to take their hands off 

the steering wheel for more than 15 seconds. 

4.2.2 Driving Scenario 

A three-lane highway scenario was considered for the evaluation study. For the driving scenario at SAE 

Level 3, the ego vehicle first drove in the right lane automatically at a speed of 130 km/h. After two 

minutes of driving, the ego vehicle changed to the middle lane due to the slow lead vehicle. After four 

minutes of driving in the middle lane, the scenario was frozen, and SAGAT questions were given. After 

the SAGAT questionnaire, the scenario continued until a traffic crash occurred in the front, where the 

SAE Level 3 system reached its limit and issued a TOR, the driver needed to take over control. The 

difference of the driving scenario at SAE Level 2 to SAE Level 3 is that, the duration of driving on the 

middle lane is seven minutes and that no TOR was given. 

 

Figure 5:The driving scenarios at SAE Level 2 and SAE Level 3 for the validation study. 

4.2.3 Material / Stimuli 

The simulation was implemented using the SILAB Version 6.5 software environment and a touchscreen 

was placed in the center console to enable or disable the automation function. Three NDRT (Non-

driving-related Tasks) were used to trigger different levels of situation awareness. As a visual NDRT, 

Surrogate Reference Task (SuRT) could be displayed in the center console. The participants had to 

identify a larger circle among several slightly smaller distractors. As an auditory NDRT, a 2-back task 

was used, where subjects heard a series of numbers, and they had to say it out when they heard the 

same number as two steps before. In the third condition, without NDRT, the subjects were 

theoretically able to concentrate exclusively on the driving task. 

4.2.4 Procedure 

In the beginning, participants were welcomed and brought to the driving simulator, where the eye 

tracker was calibrated, and they drove manually to familiarize themselves with the driving simulator. 

Each participant had two drives, starting from the right lane (see section 4.2.2). After the takeover 
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situation at the warning triangle, the participant was asked to drive to the right-hand side and stop. 

They were given the SART questionnaire on the tablet. After finishing it, they began the second drive 

after the instructor gave them the corresponding instructions. 

4.3 Validation systematics for modeling situation awareness 

A validation systematics is needed to, on the one hand, enable reliable recording of situational 

awareness but is independent of the measured variables that are included in the modeling. On the 

other hand, the measurement of the modeling parameters must not be influenced by the recording of 

this "ground truth". A combination of subjective and objective behavioral parameters could be the 

most promising solution. 

4.3.1  SAGAT 

One objective measure to assess the subjects’ SA is the Situation Awareness Global Assessment 

Technique (SAGAT) (Endsley, 1995). It is a Freeze Technique, meaning that the simulation is frozen, 

and the displays are blanked at randomly selected times (Endsley, 1988). The subjects are then asked 

about their perception of the situation at that time. The SAGAT is a global measure tool that consists 

of items about all SA requirements, including the level components: Perception of elements in the 

current situation, comprehension of the current situation and projection of the future status (Endsley, 

1988; 2019). To evaluate the subjects’ SA, their answers are compared to the data from the simulation 

computer representing the actual situation. Based on these results, a composite SAGAT score is 

calculated (Endsley, 1988) .  

4.3.2 SART  

One subjective self-rating technique for SA is the Situation Awareness Rating Technique (SART; Liu et 

al., 2014). It is a ten-dimensional rating scale, which could be grouped into the three dimensions: 

Demand on attentional resources, supply of attentional resources and understanding. The calculation 

of the SART score is based on a subtraction of the results of each of these three major groupings: 

SA=Understanding-(Demand-Supply) (Liu, Wanyan, & Zhuang, 2014). 

4.3.3 Results of Validation Systematics 

In the validation study (see section 4), SAGAT and SART questionnaires are used to provide the 

“Ground Truth” of situation awareness.  The mean and standard deviation of SAGAT scores and SART 

scores are shown in Table 1. 
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Table 1: Mean and standard deviation of the participants' answers in the SAGAT and SART. 

 

At SAE Level 2, The subjects’ SA measured by the SAGAT differed significantly depending on the NDRT 

(𝐹(2,34) = 4.03, 𝑝 = .027; η2 = 0.19) (see Figure 6). The participants were possibly more aware of the 

situation when they did not have to complete any NDRT than when they had to focus on the auditory 

task (Bonferroni-test p= .029 . At SAE Level 3, the subjects’ SA measured by the SAGAT was also 

significantly different depending on the assigned condition (𝐹(2,34) = 7.38, 𝑝 =  .002; η2 = 0.30). The 

visual (Bonferroni-test p= .003) as well as the auditory (Bonferroni-test p= .02) NDRT were apparently 

more distracting from the situation than the condition without any additional task. Neither SAE Level 

2 driving (𝐹(2,34) = 3.25, 𝑝 =  .051 ) nor SAE Level 3 driving (𝐹(2,34) = 2.43, 𝑝 =  .103 ) evoked 

significant differences in the participants’ self-assessments (SART) regarding SA (see Figure 7). 

 

Figure 6: SAGAT scores at SAE Level2 and Level 3 (none: no NDRT; cog: auditory NDRT; vis: visual NDRT).  

 

Figure 7: SART scores at SAE Level2 and Level 3 (none: no NDRT; cog: auditory NDRT; vis: visual NDRT). 

Condition SAGAT SART 

Mean Sd Mean Sd 

Level 2, no NDRT 55.00 15.08 11.25 4.79 

Level 2, auditory NDRT 28.33 21.67 7.17 4.20 

Level 2, visual NDRT 47.69 31.13 5.23 8.03 

Level 3, no NDRT 67.69 23.86 11.38 6.38 

Level 3, auditory NDRT 38.33 26.23 7.83 5.95 

Level 3, visual NDRT 30.00 27.63 6.25 5.55 
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5 Online assessment of driver situation awareness via Dynamic 

Bayesian Networks 

The project's central objective was the development and validation of algorithms for online 

assessment of a driver’s current SA at SAE Level 2 or SAE Level 3. To achieve this objective, we 

conceptualized a driver monitoring system that continuously provides assessments about the driver’s 

SA derived from sensor information about the driver, referred to as the DySAM system. 

An overview of the system as implemented in the project has been shown above in Section 4.1 (see 

Figure 4). The system is comprised of three major components: a feature processing pipeline, an 

inference engine, and a model. The feature processing pipeline collects the high-frequency sensor 

information provided by a driving simulator and processes them into a set of indicators or features to 

be used for assessing the SA. Every 100ms, the inference engine uses the model to infer probability 

distributions over the current SA given the current evidence of the indicators provided by the feature 

processing pipeline. The output of the inference engine can then be provided to any consumer, e.g., 

to trigger interaction strategies or HMI output. 

The remainder of this section is structured as follows: Section 5.1 describes the feature processing 

pipeline of the DySAM system, detailing what input data is used, how it is processed, what kind of 

situation awareness indicators are considered and how they are obtained. Section 5.2 introduces the 

three different kinds of probabilistic models, we considered for the online assessment of SA in DySAM. 

Section 5.3 provides an overview of how the data collected during the validation study was 

transformed into training datasets for parameter estimation and structure learning and test datasets 

for validation of these models. Section 5.4 provides an analysis of the characteristics and utility of the 

situation awareness indicators considered in DySAM, given the training data. Section 5.5 provides the 

results of the structure learning process used to fully specify the three different kinds of probabilistic 

models, conceptualized in Section 5.2. Lastly, Section 5.6 focusses on the evaluation procedure and 

results of the trained models. We note that this section assumes some familiarity with probabilistic 

modelling, mathematical background material including definitions of DBNs and the distributions, and 

primers on probabilistic inference, Bayesian parameter estimation, and structure learning is provided 

in Appendix 1. For a more thorough foundation, we refer to (Koller & Friedman, 2009) and especially 

(Murphy, 2012). 

5.1 Feature processing pipeline 

The feature processing pipeline (FCP) serves as an interface between the driving simulator and the 

inference engine of the DySAM system. The purpose of the FCP is to collect the high-frequency sensor 

information provided by the driving simulator and process them into a set of assignments for SA 

indicators that can be used for assessing the driver’s SA. 

The FCP is implemented as a ring buffer that holds the last 20 seconds of raw sensor information 

provided and SA indicator assignments processed thereof. In the following, we will introduce the raw 

sensor input required by the DySAM FCP, the pre-processing applied to them, the different SA 

indicators considered for DySAM and how they are processed from the raw sensor information. 
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5.1.1 Sensor information provided by the UULM simulator 

With a frequency of 60Hz, the UULM simulator provides the following information as input to the 

DySAM FCP. We note that the UULM simulator and its sensors provide more information than used by 

the DySAM system. In the following, we restrict the explanation to information that is actually required 

for the DySAM system to function properly. 

5.1.1.1 Timestamp 

The timestamp of the current measurements in milliseconds, measured by the SILAB simulation 

environment. We assume the timestamp measurement to always be valid. 

5.1.1.2 Eyelid opening 

The current height of the eyelid opening in meters, measured by the Smart Eye Pro eye-tracking 

system. We assume the eyelid opening measurement to always be valid. 

5.1.1.3 Pupil diameter 

The current diameter of the pupil in meters, measured by the Smart Eye Pro eye-tracking system. In 

case that no valid pupil diameter could be measured, the eye-tracker provides a default value of 0.004. 

5.1.1.4 Gaze direction 

The current direction of the driver’s gaze, measured by the Smart Eye Pro eye-tracking system and 

reported as a three-dimensional (direction-)vector (𝑥, 𝑦, 𝑧)𝑇 in the Smart Eye Pro’s local coordinate 

system (c.f., Section 5.1.2.3). In case that no valid gaze direction could be measured, the Smart Eye Pro 

eye-tracking system reports a zero-vector, i.e., (0,0,0)𝑇. 

5.1.1.5 Gaze origin 

The current origin of the driver’s gaze, measured by the Smart Eye Pro eye-tracking system and 

reported as a three-dimensional (position-)vector (𝑥, 𝑦, 𝑧)𝑇  in the Smart Eye Pro’s local coordinate 

system (c.f., Section 5.1.2.3). In case that no valid gaze origin could be measured, the Smart Eye Pro 

eye-tracking system reports a zero-vector, i.e., (0,0,0)𝑇. 

5.1.1.6 Head rotation 

The current rotation of the driver’s head, measured by the Smart Eye Pro eye-tracking system and 

reported as a three-dimensional rotation-vector (𝑥, 𝑦, 𝑧)𝑇  in the Smart Eye Pro’s local coordinate 

system (c.f., Section 5.1.2.3). In case that no valid head rotation could be measured, the Smart Eye Pro 

eye-tracking system reports a zero-vector, i.e., (0,0,0)𝑇. 

5.1.1.7 Current area of interest (AOI) 

The Smart Eye Pro eye-tracking system allows the specification of static areas of interest (AOIs) in the 

form of two-dimensional rectangles in the system’s three-dimensional coordinate system. For DySAM, 

we distinguish seven different AOIs (Figure 8): the left mirror, right mirror, rear mirror, a front area 

that includes the windshield and side windows, the tachometer area, the infotainment system, and an 

implicitly defined “other” AO . During runtime, the Smart Eye Pro eye-tracking system automatically 

checks whether the current gaze vector intersects with an AOI and reports the AOI with the shortest 

distance between gaze origin and intersection point in terms of a string: 

• Left Mirror: “LeftMirror” 

• Right Mirror: “RightMirror” 
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• Rear Mirror: “RearMirror” 

• Tachometer area: “Tacho” 

•  nfotainment system: “ nfotainment” 

• Front area: “Front” 

If the gaze vector does not intersect with any of the AOI specified, the system reports an empty string, 

which the FCP interprets as an “other” AO . 

 

Figure 8: Overview of AOIs defined in the UULM driving simulator. The “Other” AOI is only implicitly defined, in that we 
deem the driver to look at the other AOI if the gaze does not intersect with any of the explicitly defined AOIs. The origin and 
axes of local coordinate system used by the Smart Eye Pro eye-tracking system is denoted by (A). 

5.1.1.8 Hands-on detection 

Within DySAM, UULM developed its own hands-on / hand placement detection system by covering 

the steering wheel of the UULM simulator with 16 pressure sensors. The resulting sensor provided 

information concerning the hand placement in terms of a 16-Bit vector, representing which of the 16 

pressure sensors measured pressure and binary a hands-on detection, set to one if at least one of the 

pressure sensors measured pressure, and zero otherwise. For the DySAM system, only the hands-on 

detection was considered. 

5.1.2 Data preprocessing 

While the eyelid opening, pupil diameter, current AOI, and hands-on detection measurements can be 

used as provided, the timestamp and especially eye- and head-tracking information provided by the 

Smart Eye Pro eye-tracking system require additional pre-processing for better interpretation and 

derivation of additional information, to be explained in the following. 

5.1.2.1 Timestamps 

For the FCP, all timestamps are transformed to use seconds instead of milliseconds. 
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5.1.2.2 DySAM coordinate system 

Unless specified otherwise, the DySAM system uses a vehicle-centric right-handed coordinate systems 

according to the ISO standard 8855-2011, in which the positive z-axis points upwards, angles are 

defined in radians and use a right-hand rule (Figure 9). 

 

Figure 9: The coordinate system used by the DySAM system. 

5.1.2.3 Gaze direction 

The Smart Eye Pro eye-tracking system uses a local coordinate system, centered on and axis-aligned 

with its main camera (c.f.,Figure 8). To allow for a better interpretation of the gaze direction vector 

and derive additional measurements, a preprocessing step is employed to transform the gaze direction 

vector into the coordinate system used by DySAM (c.f., Section 5.1.2.1).  

Let 𝑚⃗⃗ GD = [
𝑥
𝑦
𝑧
] denote the current gaze direction reported by the Smart Eye Pro eye-tracking system, 

we derive the transformed gaze direction 𝑚⃗⃗ GD
′  as 

[
𝑥′

𝑦′

𝑧′
] = [

0.7604214 0.3949404 −0.5155399

0.1414529 0.7682356 0.6243438

0.6452007 −0.5498759 0.5304268

] 𝑚⃗⃗ GD,  

𝑚⃗⃗ GD
′ = [

−𝑧′

−𝑥′

𝑦′
]. 

5.1.2.4 Gaze heading and pitch 

The (transformed) gaze direction is used to derive the current gaze heading and pitch, as illustrated in 

Figure 10. Given a (transformed) gaze direction 𝑚⃗⃗ GD
′ , we define the gaze heading 𝜃Heading as the angle 

between the 𝑥-axis and the projection of 𝑚⃗⃗ GD
′  on the 𝑥-𝑦-plane (blue) and the gaze pitch 𝜃Pitch as the 

angle between the 𝑦-axis and the projection of 𝑚⃗⃗ GD
′  on the 𝑦-𝑧-plane (red).  
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Figure 10: Illustration of the gaze heading and pitch angle, derived from the (transformed) gaze direction. 

5.1.2.5 Gaze movement classification 

The Smart Eye Pro System functions as a sensor to capture the eye movements of drivers. In the initial 

stage of data processing, a preprocessing step is employed to categorize the recorded eye movements 

into distinct higher-level gaze movement classes. Commonly, eye tracking applications employ either 

a region-based classification algorithm or a velocity/dispersion-based classification algorithm. DySAM, 

in particular, integrates algorithms from both these categories. 

Velocity or dispersion-based algorithms discern gaze movement classes based solely on the temporal 

and spatial characteristics inherent in the eye tracking data (Stuart et al. 2019). Predominantly, eye 

tracking applications, including DySAM, concentrate on the most prevalent eye movement classes: 

fixations and saccades. Fixations denote prolonged periods during which the eyes remain relatively 

stationary and focused on a specific location, allowing the driver to process visual information. 

Saccades, on the other hand, are rapid and abrupt eye movements from one point to another. 

For the identification of fixations and saccades, in DySAM we implemented a real-time version of the 

I-DT (Dispersion Threshold Fixation Identification) algorithm, presented by Salvucci and Goldberg 

(2000). Pseudocode for the classification is shown in Figure 11. The concept is based on the idea that 

new eye tracking samples are collected in a sample set 𝐺. The set is marked as a fixation if all samples 

are not farther away from the center of 𝐺 as a dispersion threshold 𝜏𝑑 and samples in 𝐺 span over a 

minimum duration of 𝜏𝑡. Otherwise, it is a fixation and 𝐺 is emptied.  
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Figure 11. Pseudo code of the fixation classification. Top: the classification method. Bottom: the main loop. 

In contrast to velocity or dispersion-based algorithms, region-based algorithms incorporate 

information about the driver's environment. This is achieved by defining Areas of Interest (AOIs) within 

the visual field, relevant to the ongoing driving task. Examples of AOIs for drivers include the rear-view 

mirror, the road ahead, the dashboard, or the infotainment system. Region-based algorithms diverge 

from physiological considerations and instead focus more on task-specific characteristics, such as the 

time elapsed since the last gaze at an AOI, or the dwell time associated with an AOI. The dwell time is 

defined as the duration for which the eyes remain located on a particular AOI. The dwell time might 

encompass multiple fixations and saccades as long as they occur within the defined AOI.  

Internally, the FCP keeps track of all fixations and saccades detected within the last 10 seconds (or the 

last 𝑛 = 600 measurements). For each fixation and saccade, we store a unique ID, the associated AOI 

(c.f., Section 5.1.1.7), the starting timestamp 𝑡start, and the ending timestamp 𝑡end. For this, the FCP 

function real_time_gaze_classification(g)  

 // Dispersion threshold 

 𝜏𝑑 = 0.08 rad (≈ 4.58°)  

 // Minimum fixation duration 

 𝜏𝑡 = 100 ms  

 

 // calculate center of 𝐺 

 𝑐 =
∑𝐺

|𝐺|
  

 // add 𝑔 to 𝐺 

 𝐺 = 𝐺 ∪ 𝑔  

 // Test if the duration of G is long enough to be a fixation 

 if (now – time(first(𝐺)) < 𝜏𝑡  

  return saccade 

 // Test if any gaze location is too far away from 𝐺’s center 

 if ∃𝑔 ∈ 𝐺: distance(𝑔, 𝑐) > 𝜏𝑑:  

  𝐺 = ∅ ∪ 𝑔  

  return saccade 

 // There are enough gaze locations that are close enough to form a fixation 

 return fixation 

// Set of gaze locations  

𝐺 =  ∅  

// 2D current gaze location given as horizontal and vertical angle 

𝑔  

 

do  

𝑔 = Wait for new eyetracker data 

print(real_time_gaze_classification(𝑔)) 

while true 
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maintains a first-in-first-out queue each for fixations and saccades. Let 𝑡𝑡 be the current timestamp 

and 𝑡𝑡−(𝑛−1) be the starting timestamp of the last 𝑛 = 600 measurements. If a new fixation or saccade 

is detected, it is added to the end of the queue with the current timestamp 𝑡𝑡  as starting timestamp 

𝑡start and ending timestamp 𝑡end. While the fixation or saccade is continued, its ending timestamp 𝑡end 

is updated using the current timestamp. To remove fixations or saccades that are older than 10 

seconds, at each timestep 𝑡𝑡  , the FCP checks the front of each queue and removes the fixation or 

saccade if 𝑡end < 𝑡𝑡−(𝑛−1). 

5.1.2.6 Head rotation 

The untransformed nose direction 𝑚⃗⃗ ND  is then transformed into the DySAM coordinate system 

analogous to the transformation of the gaze direction (c.f., Section 5.1.2.3). Given the (transformed) 

nose direction 𝑚⃗⃗ ND
′ , we then derive the head heading and pitch analogues to the gaze heading and 

pitch (c.f., Figure 10) and define the head heading 𝜃HHeading as the angle between the 𝑥-axis and the 

projection of 𝑚⃗⃗ ND
′  on the 𝑥-𝑦-plane (blue) and the head pitch 𝜃HPitch as the angle between the 𝑦-axis 

and the projection of 𝑚⃗⃗ ND
′  on the 𝑦-𝑧-plane (red).  

5.1.3 Situation awareness indicators 

The (pre-processed) input data is then used to derive assignments for a set of indicators for assessing 

situation awareness (SA indicators). Literature research conducted in WP1 (c.f., Section 3.3) resulted 

in a set of eight important indicators for assessing SA. The practical implementation of these indicators 

in the FCP was complicated by the fact that not every indicator was defined in such detail that it 

allowed a straightforward implementation. Where necessary, we therefore relied on definitions 

provided by the ISO standard 15007 (2020), which also provided additional related indicators to be 

considered for the project.  

We note that naming conventions for similar and approx. identical indicators vary across the literature 

and changed over time and we contribute to this confusion by occasionally having chosen new names 

for similar pre-existing indicators. Although we stick by these names for historical reasons, we will state 

alternative names, where possible. In total, we considered a set of 71 SA indicators2, to be explained 

in the following. The complete list of all indicators is provided in Table 2. 

Table 2: List of SA indicators 

Index Symbol Name 

1 𝐹1 Pupil diameter valid 

2 𝐹2 Head rotation valid 

3 𝐹3 Gaze origin valid 

4 𝐹4 Gaze direction valid 

5 𝐹5 Pupil diameter 

6 𝐹6 Mean pupil diameter 

7 𝐹7 Pupil diameter variability 

8 𝐹8 Blink frequency 

 
2 During modelling, it showed that two indicators, the pupil diameter and the mean pupil diameter 

were not suited for DySAM and were excluded from modelling. 
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9 𝐹9 Mean blink frequency 

10 𝐹10 Blink frequency variability 

11 𝐹11 Yaw angle of the head 

12 𝐹12 Mean yaw angle of the head 

13 𝐹13 Yaw angle of the head variability 

14 𝐹14 Yaw rate of the head 

15 𝐹15 Mean yaw rate of the head 

16 𝐹16 Yaw rate of the head variability 

17 𝐹17 Gaze heading 

18 𝐹18 Mean gaze heading 

19 𝐹19 Gaze heading variability 

20 𝐹20 Gaze pitch 

21 𝐹21 Mean gaze pitch 

22 𝐹22 Gaze pitch variability 

23 𝐹23 Hands-on steering wheel 

24 𝐹24 Current AOI 

25 𝐹25 Glance duration 

26 𝐹26 Mean glance duration 

27 𝐹27 Glance duration variability 

28 𝐹28 Monitoring frequency 

29 𝐹29 Mean monitoring frequency 

30 𝐹30 Monitoring frequency variability 

31 𝐹31 Saccade frequency 

32 𝐹32 Mean saccade frequency 

33 𝐹33 Saccade frequency variability 

34 𝐹34 Dwell percentage 

35 𝐹35 Mean dwell percentage 

36 𝐹36 Dwell percentage variability 

37 𝐹37 Time since last looked at left mirror AOI 

38 𝐹38 Mean time since last looked at left mirror AOI 

39 𝐹39 Time since last looked at left mirror AOI variability 

40 𝐹40 Left mirror AOI dwell percentage 

41 𝐹41 Left mirror AOI frequency 

42 𝐹42 Time since last looked at right mirror AOI 

43 𝐹43 Mean time since last looked at right mirror AOI 

44 𝐹44 Time since last looked at right mirror AOI variability 

45 𝐹45 Right mirror AOI dwell percentage 

46 𝐹46 Right mirror AOI frequency 

47 𝐹47 Time since last looked at rear mirror AOI 

48 𝐹48 Mean time since last looked at rear mirror AOI 

49 𝐹49 Time since last looked at rear mirror AOI variability 

50 𝐹50 Rear mirror AOI dwell percentage 

51 𝐹51 Rear mirror AOI frequency 
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52 𝐹52 Time since last looked at tachometer AOI 

53 𝐹53 Mean time since last looked at tachometer AOI 

54 𝐹54 Time since last looked at tachometer AOI variability 

55 𝐹55 Tachometer AOI dwell percentage 

56 𝐹56 Tachometer AOI frequency 

57 𝐹57 Time since last looked at infotainment AOI 

58 𝐹58 Mean time since last looked at infotainment AOI 

59 𝐹59 Time since last looked at infotainment AOI variability 

60 𝐹60 Infotainment AOI dwell percentage 

61 𝐹61 Infotainment AOI frequency 

62 𝐹62 Time since last looked at front AOI 

63 𝐹63 Mean time since last looked at front AOI 

64 𝐹64 Time since last looked at front AOI variability 

65 𝐹65 Front AOI dwell percentage 

66 𝐹66 Front AOI frequency 

67 𝐹67 Time since last looked at other AOI 

68 𝐹68 Mean time since last looked at other AOI 

69 𝐹69 Time since last looked at other AOI variability 

70 𝐹70 Other AOI dwell percentage 

71 𝐹71 Other AOI frequency 

 

5.1.3.1 Mean and variability indicators 

For continuous indicators, we commonly derive additional indicators by calculating their moving 

averages and standard deviations (as a measure of variability) over the last 10 seconds or, given an 

input frequency of 60Hz, the last 600 measurements. In the following, let 𝑡 denote the current time 

step (of the FCP, not the model) and 𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−(𝑛−1) denote the sequence of the last 𝑛 = 600 

measurements of an indicator. Assuming the measurements to always be valid, we calculate the 

moving average 𝑥̅𝑡 as 

𝑥̅𝑡 =
∑ 𝑥𝑖𝑡
𝑖=𝑡−(𝑛−1)

𝑛
, 

and the moving standard deviation 𝜎𝑥
𝑡 as 

𝜎𝑥
𝑡 = √

∑ (𝑥𝑖)2𝑡
𝑖=𝑡−(𝑛−1)

𝑛
− (𝑥̅𝑡)2

2

. 

For some indicators, sensor failures or insufficient measurement quality can result in invalid 

measurements. In such cases, the simulator will usually report a default or error value, such that invalid 

measurements can be detected. To not bias the moving averages and standard deviations with invalid 

measurements, we exclude them from the calculation of the moving average and standard deviation. 

For each measurement 𝑥𝑖, 𝑖 = 𝑡 − (𝑛 − 1),… , 𝑡, let 𝑣𝑥
𝑖  denote the whether the measurement 𝑥𝑖, with 

𝑣𝑥
𝑖 = 1, if 𝑥𝑖 valid and 0 otherwise. The moving average 𝑥̅𝑡 then calculated as 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

28 
 

𝑥̅𝑡 =
∑ 𝑣𝑥

𝑖𝑥𝑖𝑡
𝑖=𝑡−(𝑛−1)

∑ 𝑣𝑥
𝑖𝑡

𝑖=𝑡−(𝑛−1)

, 

and the moving standard deviation 𝜎𝑥
𝑡 is calculated as 

𝜎𝑥
𝑡 = √

∑ 𝑣𝑥
𝑖 (𝑥𝑖)2𝑡

𝑖=𝑡−(𝑛−1)

∑ 𝑣𝑥
𝑖𝑡

𝑖=𝑡−(𝑛−1)

− (𝑥̅𝑡)2
2

. 

5.1.3.2 Sensor failure indicators 

The Smart Eye Pro eye-tracking system provides the FCP with measurements concerning the pupil 

diameter, eyelid opening, head rotation, and gaze direction. While these measurements are mostly 

trustworthy when the driver looks towards the front area, “extreme” head rotations or gaze directions 

can make render the eye-tracking system unable to provide valid measurements. To address this issue, 

we define a set of sensor failure indicators, representing, whether a measurement should be 

considered valid or invalid. The sensor failure indicators are mainly used as auxiliary variables to allow 

the model to distinguish between measurements resulting from sensor failures, which should be 

ignored, and valid measurements, which should be taken into account when assessing the driver’s SA. 

That said, given that invalid measurements mostly occur when the driver is looking to an unusual 

location, knowledge about a sensor failure is itself a potential valuable indicator that should be taken 

into consideration by DySAM. 

5.1.3.2.1 Pupil diameter valid 

The pupil diameter valid indicator indicates whether the current measurement of the pupil diameter 

is valid. In case that no valid pupil diameter could be obtained, the eye-tracking system provides a 

default value of 0.004.  

Let 𝑑Pupil
𝑡  denote the current pupil diameter and 𝑣Pupil

𝑡  denote whether the pupil diameter 

measurement is valid, with 𝑣Pupil
𝑡 = 1, if valid and 0 otherwise, we define the pupil diameter valid 

indicator 𝑣Pupil
𝑡  as 

𝑣Pupil
𝑡 = 𝕝(𝑑Pupil

𝑡 ≠ 0.004). 

5.1.3.2.2 Head rotation valid 

The head rotation valid indicator indicates whether the current measurement of the head rotation is 

valid. In case that no valid head rotation could be obtained, the eye-tracking system reports a zero 

vector.  

Let 𝑚⃗⃗ HR
𝑡  denote the current (untransformed) head rotation reported by the eye-tracking system and 

𝑣Head
𝑡  denote whether the head rotation measurement is valid, with 𝑣HR

𝑡 = 1, if valid and 0 otherwise, 

we define the head rotation valid indicator 𝑣HR
𝑡  as 

𝑣HR
𝑡 = 𝕝(𝑚⃗⃗ HR

𝑡 ≠ (0,0,0)𝑇). 

5.1.3.2.3 Gaze origin valid 

The gaze origin valid indicator indicates whether the current measurement of the gaze origin is valid. 

In case that no valid gaze origin could be obtained, the eye-tracking system reports a zero vector.  
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Let 𝑚⃗⃗ GO
𝑡  denote the current (untransformed) gaze origin reported by the eye-tracking system and 𝑣GO

𝑡  

denote whether said measurement is valid, with 𝑣GO
𝑡 = 1, if valid and 0 otherwise, we define the gaze 

origin valid indicator 𝑣GO
𝑡  as 

𝑣GO
𝑡 = 𝕝(𝑚⃗⃗ GO

𝑡 ≠ (0,0,0)𝑇). 

5.1.3.2.4 Gaze direction valid 

The gaze direction valid indicator indicates whether the current measurement of the gaze direction is 

valid. In case that no valid gaze direction could be obtained, the eye-tracking system reports a zero 

vector.  

Let 𝑚⃗⃗ GD
𝑡  denote the current (untransformed) gaze direction reported by the eye-tracking system and 

𝑣GD
𝑡  denote whether said measurement is valid, with 𝑣GD

𝑡 = 1, if valid and 0 otherwise, we define the 

gaze origin valid indicator 𝑣GD
𝑡  as 

𝑣GD
𝑡 = 𝕝(𝑚⃗⃗ GD

𝑡 ≠ (0,0,0)𝑇). 

5.1.3.3 Pupil diameter indicators 

The first set of indicators are based on the (mean) pupil diameter, selected as one of the original SA 

indicators in WP1 (c.f., Section 3.3). The mean pupil diameter is used e.g., by Liu et al. (2014) and 

Niezgoda et al. (2015), albeit, in slightly different forms. Liu et al. (2014) directly used the mean pupil 

diameter as an indicator for SA. A problem with this approach for DySAM is that due to a general pupil 

size variability among participants, the mean and raw pupil diameter sizes provide information that 

allows the identification of participants and consequently their NDRT condition and SAGAT score 

without providing actual information about SA. Similar consideration led Niezgoda et al. (2015) to use 

the percentual difference of the mean pupil diameter instead. To quote, "[c]hange in the pupil size 

was calculated as the average pupil size (given in millimetres) in each condition in relation to the 

average pupil size during the entire experimental run."  

Unfortunately, the mean pupil diameter (and the same is true for the raw pupil diameter) as used by 

Niezgoda et al. (2015) poses problems for the DySAM system in that the general average pupil size is 

unknown during utilization with arbitrary participants. As such, we’ve decided to exclude both the 

pupil diameter and the mean pupil diameter indicators for DySAM during the course of the project.  

5.1.3.3.1 Pupil diameter 

The pupil diameter indicator represents the current diameter of the pupil in meters. The pupil 

diameter is provided directly from the Smart Eye Pro eye-tracking system (c.f., Section 5.1.3.1) and 

does not require any further processing. 

5.1.3.3.2 Mean pupil diameter 

The mean pupil diameter indicator represents the moving average of the pupil diameter over the last 

10 seconds and is calculated as described in Section 5.1.3.1, using the pupil diameter and pupil 

diameter valid indictors. 

5.1.3.3.3 Pupil diameter variability 

The pupil diameter variability indicator represents the moving standard deviation of the pupil diameter 

over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the pupil diameter and 

pupil diameter valid indictors. 
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5.1.3.4 Blink frequency indicators 

5.1.3.4.1 Blink frequency 

The blink frequency is one of the original SA indicators obtained in WP1 (c.f., Section 3.3) and used 

e.g., by Niezgoda et al. (2015) and Faure et al. (2016). Faure et al. (2016) define the blink frequency as 

the number of blinks per minute, where a blink is assumed if the pupil is occluded for at least 50ms 

and up to 500ms.  

For DySAM, we use a slightly different definition for blinks and blink frequency: The blink frequency 

represents the number of blinks per second and is derived from number of blinks occurring during the 

last 10 seconds. The occurrence of blinks is derived from the eyelid opening provided by the Smart Eye 

Pro eye-tracking system (c.f., Section 5.1.1.2). Let 𝑒𝑡 and 𝑒𝑡−1 denote the current and previous eyelid 

opening measurements, and let 𝑏𝑡  represents whether we have a blink, with 𝑏𝑡 = 1, if true and 0 

otherwise, we define the presence or absence of a blink as  

𝑏𝑡 = 𝕝(𝑒𝑡 < 0.005)𝕝(𝑒𝑡−1 ≥ 0.005). 

The blink frequency is then derived as follows: Let 𝑏𝑡, 𝑏𝑡−1, … , 𝑏𝑡−(𝑛−1) denote the sequence of the 

last 𝑛 = 600 blink measurements and Δ𝑡 denote the duration of the sequence (in seconds), the blink 

frequency 𝜈Blink
𝑡  is calculated as 

𝜈Blink
𝑡 =

∑ 𝑏𝑖𝑡
𝑖=𝑡−(𝑛−1)

Δ𝑡
. 

5.1.3.4.2 Mean blink frequency 

The mean blink frequency indicator represents the moving average of the blink frequency over the last 

10 seconds and is calculated as described in Section 5.1.3.1, assuming the blink frequency 

measurements to always be valid. 

5.1.3.4.3 Blink frequency variability 

The blink frequency variability indicator represents the moving standard deviation of the blink 

frequency over the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the blink 

frequency measurements to always be valid. 

5.1.3.5 Yaw angle of the head indicators 

5.1.3.5.1 Yaw angle of the head 

The yaw angle of the head indicator represents the angle (in radians) between the forward-direction 

of the driver’s head, projected on the 𝑥-𝑦-plane and the 𝑥-axis of the DySAM coordinate system 

(representing the forward-direction of the vehicle, or the driver’s body, assuming that the driver is 

sitting normally). The yaw angle from the head is given by the head heading measurement 𝜃HHeading
𝑡 , 

derived during pre-processing of the head rotation vector (c.f., Section 5.1.2.6) and does not require 

any further processing. 

5.1.3.5.2 Mean yaw angle of the head 

The mean yaw angle of the head indicator represents the moving average of the yaw angle of the head 

over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the yaw angle of the 

head and head rotation valid indictors. 
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5.1.3.5.3 Yaw angle of the head variability 

The yaw angle of the head variability indicator represents the moving standard deviation of the yaw 

angle of the head over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the 

yaw angle of the head and head rotation valid indictors. 

5.1.3.6 Yaw rate of the head indicators 

5.1.3.6.1 Yaw rate of the head 

The yaw rate of the head is one of the original SA indicators obtained in WP1 (c.f., Section 3.3) and 

used e.g., by Schewe et al. (2019). Schewe et al. (2019) define the yaw-rate of the head as the side-

rotation rate in degrees per second, which we understand as the rotational velocity (in radians per 

seconds  of the driver’s yaw angle of the head. Let 𝜃HHeading
𝑡  denote the current, 𝜃HHeading

𝑡−1  denote the 

previous yaw angle measurements, and Δ𝑡  denote the duration (in seconds) between these 

measurements, the yaw rate of the head 𝜃̇HHeading
𝑡  is calculated as 

𝜃̇HHeading
𝑡 =

𝜃HHeading
𝑡 − 𝜃HHeading

𝑡−1

Δ𝑡
. 

5.1.3.6.2 Mean yaw rate of the head 

The mean yaw rate of the head indicator represents the moving average of the yaw rate of the head 

over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the yaw rate of the 

head and head rotation valid indictors. 

5.1.3.6.3 Yaw rate of the head variability 

The yaw rate of the head variability indicator represents the moving standard deviation of the yaw 

rate of the head over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the 

yaw rate of the head and head rotation valid indictors. 

5.1.3.7 Gaze heading indicators 

5.1.3.7.1 Gaze heading 

The gaze heading indicator represents the angle  in radians  between the driver’s gaze, projected on 

the 𝑥-𝑦-plane and the 𝑥-axis of the DySAM coordinate system. The gaze heading 𝜃Heading
𝑡  is derived 

during pre-processing of the gaze direction vector (c.f., Section 5.1.2.4) and does not require any 

further processing. 

5.1.3.7.2 Mean gaze heading 

The mean gaze heading indicator represents the moving average of the gaze heading over the last 10 

seconds and is calculated as described in Section 5.1.3.1, using the gaze heading and gaze direction 

valid indictors. 

5.1.3.7.3 Gaze heading variability 

The gaze heading variability indicator represents the moving standard deviation of the gaze heading 

over the last 10 seconds and is calculated as described in Section 5.1.3.1, using the gaze heading and 

gaze direction valid indictors. 
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5.1.3.8 Gaze pitch indicators 

5.1.3.8.1 Gaze pitch 

The gaze pitch indicator represents the angle  in radians  between the driver’s gaze, projected on the 

𝑦-𝑧-plane and the 𝑦-axis of the DySAM coordinate system. The gaze pitch 𝜃Pitch
𝑡  is derived during pre-

processing of the gaze direction vector (c.f., Section 5.1.2.4) and does not require any further 

processing. 

5.1.3.8.2 Mean gaze pitch 

The mean gaze pitch indicator represents the moving average of the gaze pitch over the last 10 seconds 

and is calculated as described in Section 5.1.3.1, using the gaze pitch and gaze direction valid indictors. 

5.1.3.8.3 Gaze pitch variability 

The gaze pitch variability indicator represents the moving standard deviation of the gaze pitch over 

the last 10 seconds and is calculated as described in Section 5.1.3.1, using the gaze pitch and gaze 

direction valid indictors. 

5.1.3.9 Hands-on steering wheel indicator 

The hands-on steering wheel indicator represents whether the driver currently touches the steering 

wheel with at least one hand and is provided directly by the hands-on detection sensor developed by 

UULM. We define the hands-on steering wheel indicator to be 1 if the driver touches the steering 

wheel and 0 otherwise. 

5.1.3.10 Current AOI indicator 

The current AOI indictor represents which of the seven different AOIs the driver is currently looking at, 

as reported by the Smart Eye Pro eye-tracking system, for which we distinguish between the left 

mirror, right mirror, rear mirror, the front area, the tachometer area, the infotainment system, and an 

“other” AO   Figure 8). While the Smart Eye Pro eye-tracking system reports the current AOI in terms 

of a string (c.f., Section 5.1.1.7), for the current AOI indicator, we encode the current AOI as an integer, 

for which we rely on the following mapping: 

0. Left mirror AOI 

1. Tachometer AOI 

2. Infotainment AOI 

3. Rear mirror AOI 

4. Right mirror AOI 

5. Front area AOI 

6. Other AOI 

We note that, as used within the DySAM probabilistic models, the current AOI indicator is strongly 

related to what the ISO standard 15007 (2020) calls the glance location probability metric, which it 

defines as the “probability that the eyes are fixated at an AO   or set of related AO s  during a condition, 

task, subtask or sub-subtask”. 

5.1.3.11 Glance duration indicators 

5.1.3.11.1 Glance duration 

The glance duration is one of the original SA indicators obtained in WP1 (c.f., Section 3.3) and used 

e.g., by Yang et al. (2018). Yang et al. (2018) define the glance duration as "[t]he average time spend 
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in the windshield area within on (sic) glance", measured over a duration of 37 mins. The authors do 

however not provide a definition for what they consider a glance. The ISO standard 15007 (2020) 

defines glances and glance duration as “temporal maintaining of visual gaze within an AO , bounded 

by the perimeter of the AOI which can be comprise of more than one fixation and saccades within the 

AO  and its duration is measured as glance duration”. We note that the glance duration as used by 

Yang et al. (2018) therefore differs from the glance duration defined by the ISO standard 15007 (2020) 

in that the former is an average, while the latter refers to the duration of a single glance. The ISO 

standard 15007 (2020) provides its own definition for such averages, referred to as the mean glance 

duration, defined as “mean duration of all glance durations to an AOI (or set of related AOIs) during a 

condition, task, subtask or sub-subtask”. 

For DySAM, we define the glance duration as the average duration of glances over the last 10 seconds 

towards driving-related AOIs, for which we consider the left, right, and rear mirror, the tachometer, 

and the front area AOI. Let 𝑡𝑡 be the current timestamp and 𝑡𝑡−(𝑛−1) be the starting timestamp of the 

last 𝑛 = 600 measurements, and let there be 𝑚 glances towards driving-related AOIs, each beginning 

at time stamp 𝑡𝑖
start  and ending at time stamp 𝑡𝑖

end , 𝑖 = 1,… ,𝑚 , the glance duration 𝜏Glance
𝑡  is 

calculated as 

𝜏Glance
𝑡 =

∑ [max(𝑡𝑡−(𝑛−1), 𝑡𝑖
start) − min(𝑡𝑡 , 𝑡𝑖

end)]𝑚
𝑖=1

𝑚
. 

5.1.3.11.2 Mean glance duration 

The mean glance duration indicator represents the moving average of the glance duration over the 

last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the glance duration 

measurements to always be valid. 

We note that the mean glance duration indicator is not to be confused with the mean glance duration 

defined in the ISO standard 15007 (2020) (c.f., Section 5.1.3.11.1) in that the former represents the 

moving average of the latter. 

5.1.3.11.3 Glance duration variability 

The glance duration variability indicator represents the moving standard deviation of the glance 

duration over the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the glance 

duration measurements to always be valid. 

5.1.3.12 Monitoring frequency indicators 

5.1.3.12.1 Monitoring frequency 

The monitoring frequency is one of the original SA indicators obtained in WP1 (c.f., Section 3.3) and 

used e.g., by Kunze et al. (2018). Kunze et al. (2018) defined the monitoring frequency as the number 

of monitoring glances per second, where a monitoring glance was defined as glances on driving-related 

AOIs, including the field relevant for driving, instruments, and an uncertainty display. The ISO standard 

15007 (2020) provides a similar definition for what it calls the glance rate or number of glances per 

unit of time, defined as the number of task-related glances divided by the task duration.  

Adapting these definitions, we define the monitoring frequency as the number of glances over the last 

10 seconds towards driving-related AOIs, for which we consider the left, right, and rear mirror, the 

tachometer, and the front area AOI. Let 𝑡𝑡  be the current timestamp and 𝑡𝑡−(𝑛−1)  be the starting 
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timestamp of the last 𝑛 = 600 measurements, and let there be 𝑚 glances towards driving-related 

AOIs, with the first glance starting at time step 𝑡start, the monitoring frequency 𝜈Monitoring
𝑡  is calculated 

as 

𝜈Monitoring
𝑡 =

𝑚

𝑡𝑡 −min(𝑡𝑡−(𝑛−1), 𝑡start)
. 

5.1.3.12.2 Mean monitoring frequency 

The mean monitoring frequency indicator represents the moving average of the monitoring frequency 

over the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the monitoring 

frequency measurements to always be valid. 

5.1.3.12.3 Monitoring frequency variability 

The monitoring frequency variability indicator represents the moving standard deviation of the 

monitoring frequency over the last 10 seconds and is calculated as described in Section 5.1.3.1, 

assuming the monitoring frequency measurements to always be valid. 

5.1.3.13 Saccade frequency indicators 

5.1.3.13.1 Saccade frequency 

The saccade frequency is one of the original SA indicators obtained in WP1 (c.f., Section 3.3) and used 

e.g., by  Wu et al. (2018).  Wu et al. (2018)  did not explicitly define the saccade frequency but seem to 

refer to the general number of saccades per minute, unrelated to any specific AOI. We follow this 

general proposal but define the saccade frequency as the number of saccades per second occurred 

during the last 10 seconds, unrelated to any specific AOI. 

Let 𝑡𝑡  be the current timestamp and 𝑡𝑡−(𝑛−1)  be the starting timestamp of the last 𝑛 = 600 

measurements, and let there be 𝑚 saccades, with the first saccade starting at time step 𝑡start, the 

saccade frequency 𝜈Saccade
𝑡  is calculated as 

𝜈Saccade
𝑡 =

𝑚

𝑡𝑡 −min(𝑡𝑡−(𝑛−1), 𝑡start)
. 

5.1.3.13.2 Mean saccade frequency 

The mean saccade frequency indicator represents the moving average of the saccade frequency over 

the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the saccade frequency 

measurements to always be valid. 

5.1.3.13.3 Saccade frequency variability 

The saccade frequency variability indicator represents the moving standard deviation of the saccade 

frequency over the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the 

saccade frequency measurements to always be valid. 

5.1.3.14 Dwell percentage indicators 

5.1.3.14.1 Dwell percentage 

Related to the glance duration and monitoring frequency indicators, older revisions of the ISO standard 

15007 (2020) proposed the total or percentage of glance time to a target as a measure of visual 

demand posed by that location. The current revision of the ISO standard 15007 (2020) proposes the 

percentage time on AOI metric, defined as the “ratio representing the percentage of time glances are 
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within an AOI (or set of related AOIs) during a condition, task, subtask or sub-subtask. With the glance 

duration and monitoring frequency indicators focusing on driving-related AOIs, we considered the 

percentage time on driving-related AOIs as a meaningful addition to the set of SA indicators, which we 

refer to as dwell percentage. 

Within DySAM, the dwell percentage indicator therefore represents the percentage of glances over 

the last 10 seconds that have been targeted driving-related AOIs, for which we consider the left, right, 

and rear mirror, the tachometer, and the front area AOI. Let 𝑡𝑡 be the current timestamp and 𝑡𝑡−(𝑛−1) 

be the starting timestamp of the last 𝑛 = 600  measurements, and let there be 𝑚  glances, each 

beginning at time stamp 𝑡𝑖
start and ending at time stamp 𝑡𝑖

end, 𝑖 = 1,… ,𝑚, the dwell percentage 𝑑Dwell
𝑡  

is calculated as 

𝑑Dwell
𝑡 =

∑ [max(𝑡𝑡−(𝑛−1), 𝑡𝑖
start) − min(𝑡𝑡 , 𝑡𝑖

end)]𝑚
𝑖=1

𝑡𝑡 − 𝑡𝑡−(𝑛−1)
. 

5.1.3.14.2 Mean dwell percentage 

The mean dwell percentage indicator represents the moving average of the dwell percentage over the 

last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the dwell percentage 

measurements to always be valid. 

5.1.3.14.3 Dwell percentage variability 

The dwell percentage variability indicator represents the moving standard deviation of the dwell 

percentage over the last 10 seconds and is calculated as described in Section 5.1.3.1, assuming the 

dwell percentage measurements to always be valid. 

5.1.3.15 Single AOI indicators 

The glance duration, monitoring frequency, and dwell percentage indicators each consider a driving-

related set of AOIs, comprised of the left, right, and rear mirror, tachometer, and front area. Similar 

indicators can also be defined for each single AOI. For each of the seven AOIs (left mirror, right mirror, 

rear mirror, tachometer, infotainment, front, and other), we define a set of five indicators. 

5.1.3.15.1 Time since last looked at AOI 

Kirchner and Ahlström (2013) proposed a computational model for detecting driver distraction, called 

AttenD, which uses a buffer that fills up as the driver looks through the windshield and drains as the 

driver looks away. Once the buffer is completely drained, it is assumed that the driver is distracted. 

Ahlström et al. (2022) introduced AttenD2.0, which extends the former approach by the introduction 

of multiple buffers for different AOIs and non-linear fill and decay rates, providing an easy to 

implement and understand way to detect whether a driver has lost SA in respect to a specific AOI. 

Adapting the idea of AOI-specific buffers towards indicators that are more suitable for probabilistic 

models, we added the time since last looked at a specific AOI indicators, which, as the name suggest, 

represent the time since the driver last looked at a specific AOI. For this, we rely on the current AOI 

provided by the eye-tracking system: Let 𝑎 ∈ {0,… ,6} denote the AOI the driver is looking at, 𝜏𝑎𝑖  

denote the time since the driver last looked at AOI 𝑖, 𝑖 ∈  {0, … ,6} , and Δ𝑡  denote the delta in 

timestamps between the sensor measurements at time steps 𝑡 and 𝑡 − 1, we calculate 𝜏𝑎𝑖
𝑡  as 

𝜏𝑎𝑖
𝑡 = {

𝜏𝑎𝑖
𝑡−1  Δ𝑡, 𝑖 ≠ 𝑎

0, else
. 
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5.1.3.15.2 Mean time since last looked at AOI 

The mean time since last looked at a specific AOI indicator represents the moving average of the time 

since last looked at the AOI over the last 10 seconds and is calculated as described in Section 5.1.3.1, 

using the time since last looked at the AOI indictor, assuming the measurements to always be valid. 

5.1.3.15.3 Time since last looked at AOI variability 

The time since last looked at a specific AOI variability indicator represents the moving standard 

deviation of the time since last looked at the AOI over the last 10 seconds and is calculated as described 

in Section 5.1.3.1, using the time since last looked at the AOI indictor, assuming the measurements to 

always be valid. 

5.1.3.15.4 AOI dwell percentage 

The AOI dwell percentage represents the percentage of time the driver looked into a specific AOI over 

the course of the last 10 seconds. Let 𝑎𝑡 , 𝑎𝑡−1, … , 𝑎𝑡−(𝑛−1) denote the sequence of the last 𝑛 = 600 

current AOI measurements and 𝑑𝑎𝑗
𝑡  denote the current dwell percentage for AOI 𝑗, 𝑗 ∈ {0,… ,6}, 𝑑𝑎𝑗

𝑡  is 

calculated as 

𝑑𝑎𝑗
𝑡 =

∑ 𝕝(𝑗 = 𝑎𝑖)𝑡
𝑖=𝑡−(𝑛−1)

𝑛
. 

We note that the AO  dwell percentage indicator is strongly related to the “percentage time on AO ” 

metric proposed by the ISO standard 15007 (2020), defined as the “ratio representing the percentage 

of time glances are within an AOI (or a set of related AOIs) during a condition, task, subtask, or sub-

subtask”, but differs in using the current AO  assessment provided by the Smart Eye Pro eye-tracking 

system instead of glances. 

5.1.3.15.5 AOI frequency 

The AOI frequency indicator represents the number of gazes into a specific AOI per second, as occurred 

during the last 10 seconds. 𝑎𝑡 , 𝑎𝑡−1, … , 𝑎𝑡−(𝑛−1) denote the sequence of the last 𝑛 = 600 current AOI 

measurements, Δ𝑡  denote the duration of the sequence in seconds, and 𝜈𝑎𝑗
𝑡  denote the current 

frequency for AOI 𝑗, 𝑗 ∈ {0,… ,6}, 𝜈𝑎𝑗
𝑡  is calculated as 

𝜈𝑎𝑗
𝑡 =

∑ 𝕝(𝑗 = 𝑎𝑖)𝑡
𝑖=𝑡−(𝑛−1)

Δ𝑡
. 

We note that the AO  frequency indicator is strongly related to the “glance rate” or “number of glances 

per unit of time” metric proposed by the  SO standard 1 007 (2020), defined as the “number of glances 

divided by the duration of condition, task, subtask, or sub-subtask”, but differs in using the current AO  

assessment provided by the Smart Eye Pro eye-tracking system instead of glances. 

5.2 Conceptional framework for modelling situation awareness via Dynamic Bayesian 

Networks 

For vehicle-based systems tasked with predicting a driver's situation awareness, a significant hurdle 

arises: the inherent challenge that neither Situation Awareness (SA) nor certain influencing or 

dependent aspects can be directly measured or accessed by the vehicle. This issue is depicted in Figure 

12, outlining the relevant facets of a driver's SA within the DySAM context. 
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Figure 12. DySAM relevant aspects of drivers' situation awareness process. Some relationships between these aspects are 
considered accessible within the context of the DySAM system (green arrows), while other are not (red arrows). 

Figure 12 showcases various aspects influencing a driver's SA. The accessibilities of these aspects 

within the DySAM system are indicated by the color of the surrounding boxes. Aspects in green boxes 

are directly accessible for the DySAM system, aspects in red boxes are inaccessible and the ones in 

grey boxes are only accessible during the design time of the system.  

For a meticulous evaluation of a driver's SA, a driver monitoring system must discern the SA 

requirements the driver should be aware of  SA requirements ② + ③  and identify which aspects 

the driver is currently aware of ⑦. This information is crucial for determining whether the driver 

meets all SA requirements for the present situation. 

Accurately gauging SA requirements for each potential situation is a challenge in itself. DySAM 

pragmatically assumes that situation-specific SA requirements③, such as awareness of a neighboring 

vehicle initiating a lane change, remain unknown to the monitoring system. Consequently, the system 

lacks knowledge of how these specific requirements influence the driver's behavior concerning the 

establishment and maintenance of an adequate level of SA ④. 

Nevertheless, DySAM does factor in more generic SA requirements ② applicable to diverse driving 

scenarios. These include for example staying alert to traffic, being aware of surroundings, and 

maintaining attention with sufficient frequency and continuity. The system endeavors to model the 

impact of these generic requirements on the driver's behavior regarding establishing and maintain SA. 

However, the intricate cognitive processes within the driver's mind remain beyond direct reach, with 

the monitoring system relying solely on observable measurements ⑥ as indicators for the 

maintenance process. 

Complicating matters further, driver behavior is not solely dictated by SA requirements; it can be 

significantly disrupted by a plethora of non-driving tasks ⑤, such as phone conversations, interaction 

with devices, or distractions. Acknowledging this, DySAM assumes that the monitoring system lacks 

real-time access to such information. The project, however, conducted experiments during the design 

phase, employing various non-driving related tasks to explore their impact. 

Moreover, the system faces the challenge of limited direct access to the driver's SA state ⑦. 

Conclusions about SA can be drawn through two main avenues: direct questioning using SA 
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questionnaires like SART and SAGAT ⑧, employed in DySAM experiments during design, and indirect 

inference through its impact on the driver's behavior and performance ④, ⑨. The latter, however, 

relies on observable indicators ⑥+⑩ due to the unavailability of questionnaires in non-laboratory 

settings. The complexity of these interconnected challenges underscores the objectives of the DySAM 

project, including the identification of suitable indicators and the modeling of relationships between 

these indicators and the SA maintenance process. 

5.2.1 Modelling approach 

For modelling the uncertain relationship between SA and observable SA indicators, we used DBNs (c.f., 

Appendix 1, Section 1.3). DBNs are probabilistic graphical models that use directed acyclic graphs to 

factorize the joint probability / density distribution (JPD) of time series of set of variables into products 

of simpler (conditional) probability / density distributions (CPDs). They generalize well-known 

probabilistic models for dynamic systems like Hidden Markov Models and Kalman Filters.  

Model development and validation requires ground truth data for both indicators and SA. While the 

indicators can be derived from the available sensor information, SA cannot be observed directly. As 

such, we rely on two surrogate measures, we assume to correlate with SA, the SAGAT score and the 

NDRT, and focus on different types of models, either focusing on the NDRT or the SAGAT score, which 

we refer to as the “NDRT”, the “SAGAT Score”, and the “extended SAGAT Score” models.  

The SAGAT is the gold standard for assessing SA and the SAGAT Score and extended SAGAT Score 

models directly model the relationship between a driver’s SAGAT score and the observable indicators. 

However, as the SAGAT queries drivers about their knowledge about the situation at a specific point 

in time, the resulting assessment is only representative for a short period of time prior to the test, 

limiting the amount of data available for model training and validation. To make use of all data 

available, we rely on the NDRT as a surrogate measure for SA. Assuming that attentive drivers are able 

to maintain sufficient SA, a distraction via NDRTs will, on average, result in diminished or insufficient 

SA. The NDRT models therefore aim to model the relationship between the different NDRT conditions 

and the observable indicators to reason about whether the driver’s current SA is sufficient.  

In the following subsections, we will provide the conceptual foundation for each of these models. 

5.2.2 NDRT Models 

The NDRT models are based on the assumption that an attentive driver is able to establish and 

maintain sufficient SA and that a disturbance of this process via the introduction of an NDRT will, on 

average, result in a diminished or insufficient SA. While the actual SA cannot be observed directly, the 

normal and disturbed process for establishing and maintaining SA is assumed to result in 

distinguishable behavioral processes that can be observed via the SA indicators, like e.g., the gaze and 

monitoring behavior of the driver. As such, for the NDRT models, observing these indicators allows to 

detect whether the SA process is disturbed or undisturbed, which allows to reason about whether the 

driver’s current SA is sufficient or insufficient. 

Let  

𝑆1, Val(𝑆1) = {𝑠10, 𝑠11} 
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represent a binary assessment of SA, with 𝑠10 representing insufficient and 𝑠11 representing sufficient 

SA. Let 

𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} 

represent three behavioral patterns for establishing and maintaining SA, with 𝑏0  representing 

undisturbed driver behavior, and 𝑏1  and 𝑏2  representing driver behavior when disturbed by a 

cognitive and visual non-driving related task respectively. Lastly, let  

𝑭 = {𝐹1, …𝐹69} 

denote the set of SA indicators. Conceptionally, the NDRT models are defined as DBNs, that, for any 

number of time slices 𝑇, define a JPD 𝑝(𝑆1
1:𝑇, 𝐵1:𝑡, 𝑭1:𝑇) as: 

𝑝(𝑆1
1:𝑇 , 𝐵1:𝑡 , 𝑭1:𝑇) = 𝑝(𝑆1

1|𝐵1)𝑝(𝐵1)𝑝(𝑭1|𝐵1)∏𝑝(𝑆1
𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡)

𝑇

𝑡=2

. 

Here, 𝑝(𝑆1
𝑡|𝐵𝑡) is a conditional probability distribution (CPD) that describes the level of SA to expect 

for each behavioral pattern, while 𝑝(𝐵𝑡|𝐵𝑡−1) describes how the behavioral patterns change over 

time. Lastly, 𝑝(𝑭𝑡|𝐵𝑡) can be understood as an observation model that describes what indicators we 

expect to observe given the behavioral patterns. A graphical representation of the structure is shown 

in Figure 13. 

   

(a) (b) (c) 

Figure 13: Conceptional structure of the NDRT models. (a) BN for the first times slice. (b) 2TBN for subsequent time slices. (c) 
Unrolled network over multiple time slices. 

 Within the DySAM system, the NDRT models shall be utilized as follows: With a constant frequency of 

10Hz, the NDRT models are used to infer the belief state 𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡), i.e., the joint probability 

distribution over the binary situation awareness 𝑆1
𝑡 and the behavioral patterns 𝐵𝑡  at the current time 

step 𝑡, given the sequence 𝒇1:𝑡 of all observed evidence of the SA indicators from the activation of the 

system until 𝑡, which is given by: 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡) ∝ 𝑝(𝑆1

𝑡|𝐵𝑡)𝑝(𝒇𝑡|𝐵𝑡) ∑ 𝑝(𝐵𝑡|𝑏𝑡−1)𝑝(𝑏𝑡−1|𝒇1:𝑡−1)

𝑏𝑡−1∈Val(𝐵𝑡−1)

. 

From this belief state, the belief state over the binary situation awareness  

𝑝(𝑆1
𝑡|𝒇1:𝑡) = ∑ 𝑝(𝑆1

𝑡, 𝑏𝑡|𝒇1:𝑡)

𝑏𝑡∈Val(𝐵𝑡)

  

is considered as the primary model output, while the belief state over the behavioral patterns 
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𝑝(𝐵𝑡|𝒇1:𝑡) = ∑ 𝑝(𝑠1
𝑡 , 𝐵𝑡|𝒇1:𝑡)

𝑠1
𝑡∈Val(𝑆1

𝑡)

 

is required to obtain the belief state 𝑝(𝑆1
𝑡+1, 𝐵𝑡+1|𝒇1:𝑡+1) at time step 𝑡  1. 

5.2.3 SAGAT Score Models 

The SAGAT models aim at a finer resolution of SA by directly modelling the relationship between a 

driver’s SAGAT score and the observable indicators.  

Let  

𝑆2, Val(𝑆2) = {𝑠20, 𝑠21… , 𝑠25} 

represent the SAGAT score, with the assignments 𝑠20, 𝑠21… , 𝑠25 corresponding to a SAGAT score of 

0%, 20%, …, 100%, and let  

𝑭 = {𝐹1, …𝐹69} 

denote the set of SA indicators. The SAGAT Score models are conceptualized as state-observation 

DBNs, in this case, Hidden Markov Models, with dynamic model 𝑝(𝑆2
𝑡|𝑆2

𝑡−1) and observation model 

𝑝(𝑭𝑡|𝑆2
𝑡). For any number of time slices 𝑇, the SAGAT Score models define a JPD 𝑝(𝑆2

1:𝑇 , 𝑭1:𝑇) as: 

𝑝(𝑆2
1:𝑇 , 𝑭1:𝑇) = 𝑝(𝑆2

1)𝑝(𝑭1|𝑆2
1)∏𝑝(𝑆2

𝑡|𝑆2
𝑡−1)𝑝(𝑭𝑡|𝑆2

𝑡)

𝑇

𝑡=2

. 

A graphical representation of the structure is shown in Figure 14. 

   

(a) (b) (c) 

Figure 14: Conceptional structure of the SAGAT Score models. (a) BN for the first times slice. (b) 2TBN for subsequent time 
slices. (c) Unrolled network over multiple time slices. 

Similar to the NDRT models, the aim of the SAGAT Score models is to, with a constant frequency of 

10Hz, infer the belief state 𝑝(𝑆2
𝑡|𝒇1:𝑡), i.e., the probability distribution over the SAGAT score 𝑆2

𝑡 at the 

current time step 𝑡, given the sequence 𝒇1:𝑡 of all observed evidence of the SA indicators from the 

activation of the system until 𝑡, given by: 

𝑝(𝑆2
𝑡|𝒇1:𝑡) ∝ 𝑝(𝒇𝑡|𝑆2

𝑡) ∑ 𝑝(𝑆2
𝑡|𝑠2

𝑡−1)𝑝(𝑠2
𝑡−1|𝒇1:𝑡−1)

𝑠2
𝑡−1∈Val(𝑆2

𝑡−1)

. 

5.2.4 Extended SAGAT Score Models 

The SAGAT Score models abstract from whether the process for establishing and maintaining SA is 

disturbed by an NDRT. Information whether the process is disturbed by an NDRT could help in 

predicting the SAGAT score. As such, let 𝑆2, 𝐵, and 𝑭 denote the SAGAT score, the behavioral patterns, 

and the set of indicators, as defined previously. The extended SAGAT Score models extend the SAGAT 

Score models by conditioning both the SAGAT score and the indicators with the behavioral patterns. 

            2
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As such, for any number of time slices 𝑇 , the extended SAGAT Score models define a JPD 

𝑝(𝑆2
1:𝑇, 𝑭1:𝑇 , 𝐵1:𝑇) as: 

𝑝(𝑆2
1:𝑇 , 𝑭1:𝑇 , 𝐵1:𝑇) = 𝑝(𝐵1)𝑝(𝑆2

1|𝐵1)𝑝(𝑭1|𝑆2
1, 𝐵1)∏𝑝(𝐵𝑡)𝑝(𝑆2

𝑡|𝑆2
𝑡−1, 𝐵𝑡)𝑝(𝑭𝑡|𝑆2

𝑡, 𝐵𝑡)

𝑇

𝑡=2

. 

A graphical representation of the structure is shown in Figure 15. 

   

(a) (b) (c) 

Figure 15: Conceptional structure of the extended SAGAT Score models. (a) BN for the first times slice. (b) 2TBN for subsequent 
time slices. (c) Unrolled network over multiple time slices. 

Analogues to the SAGAT Score models, the extended SAGAT Score models are used to, with a constant 

frequency of 10Hz, infer the belief state 𝑝(𝑆2
𝑡|𝑏1:𝑡, 𝒇1:𝑡), i.e., the probability distribution over the 

SAGAT score 𝑆2
𝑡 at the current time step 𝑡, given the sequence of the behavioral patterns 𝑏1:𝑡 and the 

evidence of the SA indicators 𝒇1:𝑡, from the activation of the system until 𝑡, given by: 

𝑝(𝑆2
𝑡|𝑏1:𝑡, 𝒇1:𝑡) ∝ 𝑝(𝒇𝑡|𝑆2

𝑡, 𝑏𝑡) ∑ 𝑝(𝑆2
𝑡|𝑠2

𝑡−1, 𝑏𝑡)𝑝(𝑠2
𝑡−1|𝒇1:𝑡−1, 𝑏1:𝑡−1)

𝑠2
𝑡−1∈Val(𝑆2

𝑡−1)

. 

 
 

5.3 Datasets and annotations 

The experiments conducted (c.f., Section 4.2) resulted in each 37 trials for SAE level 2 and 3 with 

approx. uniform distribution of trials without non-driving related task (SAE Level 2: 12 trials, SAE Level 

3: 13 trials), cognitive non-driving related task (12, 12), and visual driving related task (13, 12). For 

training and validation of the DySAM models, the data was split into training data, used for parameter 

estimation and model selection, and test data, reserved exclusively for validation. The overall process 

is depicted in Figure 16. Each trial is composed of a two minute section where the vehicle drove on the 

right lane until changing to the middle lane, were it drove for seven (SAE Level 2) or four minutes (SAE 

Level 3), before the SAGAT was conducted, following by a three minute section on the middle lane 

until encountering a situation that required the driver to take over control.  
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Figure 16: Illustration of splitting the DySAM data in training and test datasets for the NDRT and SAGAT models. 

For the NDRT model, the data of each trial from start until the take-over situation was split into four 

equal-length sections of three (SAE Level 2) or 2.25 minutes (SAE Level 3) length that were alternately 

assigned to the training and test data. The order of assignment was changed for each trial, i.e., for half 

of the trials, the first and third sequence was assigned to the training data, the second and fourth 

sequence to the test data, and vice versa for the other half of the trials. To provide a ground truth 

situation awareness for training and evaluation, trials without NDRT (𝐵 = 𝑏0)  were labelled as 

sufficient (𝑆1 = 𝑠10) , trials with cognitive (𝐵 = 𝑏1)  or visual (𝐵 = 𝑏2)  NDRT were labelled as 

insufficient (𝑆1 = 𝑠11) SA. The result were two training datasets,  

𝒟Training
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148280 

and 

𝒟Training
NDRT:L3 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 101460, 

and two test datasets 

𝒟Test
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148275 

and 

𝒟Test
NDRT:L3 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 101462, 

each consisting of 74 approx. equal-sized sequences of approx. three / 2.25 minutes length.  
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For the “SAGAT Score” models, for each trial, a one-minute section before the SAGAT freeze was split 

into two equal length sections and allocated to training and test data in a similar fashion, using the 

SAGAT Score as a ground truth for 𝑆2. The result were two training datasets,  

𝒟Training
SAG:L2 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11100 

and 

𝒟Training
SAG:L3 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11100, 

and two test datasets 

𝒟Test
SAG:L2 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11101 

and 

𝒟Test
SAG:L3 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11100, 

each consisting of 37 equal-sized sequences of 30 seconds length.  

5.4 Indicator analysis 

Section 5.1.3 provides an overview of how each of the selected SA indicators is obtained from the 

sensor information provided by the UULM simulator platform. This section provides a more detailed 

overview of the indicator measurements derived from the SAE Level 2 and SAE Level 3 training data 

and their discriminative power for discriminating between the three different behavioral patterns / 

NDRT conditions. 

5.4.1 Indicator overview 

This section provides histograms for each indicator derived from the SAE Level 2 and SAE Level 3 

training data. In general, we have that driver behavior when distracted by a visual NDRT clearly differs 

from driver behavior without NDRT and when distracted by a cognitive NDRT, while distinction 

between the latter is much more difficult. Furthermore, there are only subtle differences between 

driver behavior under SAE Level 2 and SAE Level 3 conditions. 

5.4.1.1 Sensor failure indicators 

Figure 17 shows histograms of the four sensor failure indicators in the SAE Level 2 and SAE Level 3 

training data. As a reminder, for sensor failure indicators, a value of 0 indicates an invalid, while a value 

of 1 indicates a valid measurement. As should be apparent, invalid measurements of the pupil 

diameter and the head rotation are quite rare, while invalid measurements concerning the gaze origin 

and especially the gaze direction are much more common. In all cases, sensor failures are more 

common during the visual NDRT, potentially caused by the tendency of the drivers to look at the 

infotainment system, where the Smart Eye Pro eye-tracking system is more likely to lose track of the 

gaze. 
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Figure 17: Histograms of the sensor failure indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training data.  
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5.4.1.2 Pupil diameter indicators 

Figure 18 shows histograms of the three pupil diameter indicators in the SAE Level 2 and SAE Level 3 

training data. Concerning the mean pupil diameter, there are some differences between the no NDRT 

and cognitive NDRT condition, although much more pronounced in SAE Level 2 than SAE Level 3. 

Unfortunately, we were unable to conclude whether these changes are an effect of the different NDRT 

conditions or an artifact of the natural variability in the participants average pupil diameters, resulting 

in the exclusion of the pupil diameter and mean pupil diameter indicators from modelling. The pupil 

diameter variability should be more robust to the natural variability in the participants average pupil 

diameters and provides some discrimination between the visual NDRT and the no / cognitive NDRT 

condition. 
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Figure 18: Histograms of the pupil diameter indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training data. 
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5.4.1.3 Blink frequency indicators 

Figure 19 shows histograms of the three blink frequency indicators in the SAE Level 2 and SAE Level 3 

training data. Participants without NDRT show normal and mean blink frequencies up to approx. 1.5 

blinks per second, peaking at around 0.4 blinks per second. Participants tasked with the cognitive NDRT 

show higher frequences up to approx. 3 blinks per second, with a peak around 0.5 blinks per second. 

Participants tasked with the visual NDRT show even higher frequencies up to 4 blinks per second, but 

peak at the lowest frequency of around 0.1 blinks per second. Comparing SAE Level 2 and SAE Level 3, 

most noticeable, there is a peak for the normal and mean blink frequency in the region of 0.5 – 1.5 

blinks per seconds for participants tasked with the cognitive NDRT and an opposite “dent” for 

participants tasked with the visual NDRT. More research is needed to conclude whether these changes 

are an effect of the different NDRT conditions or an artifact of a potential natural variability in the 

participants average blink frequency. 
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Figure 19: Histograms of the blink frequency indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 
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5.4.1.4 Yaw angle of the head indicators 

Figure 20 shows histograms of the three yaw angles of the head indicators in the SAE Level 2 and SAE 

Level 3 training data. As expected by the nature of the visual NDRT, participants tasked with the visual 

NDRT are much more likely to have their head rotated to the right (towards the infotainment AOI) 

allowing for a clear discrimination between the visual NDRT and the no / cognitive NDRT conditions, 

and show a slightly higher variability in the yaw angle of the head, Participants tasked with the 

cognitive NDRT keep their heads rotated slightly more to the right and center than participants without 

NDRT and show a lower variability. Comparing SAE Level 2 and SAE Level 3, the differences in variability 

reduce for SAE Level 3, while the (slight) differences between the (mean) yaw angle of the head 

between participants tasked with the cognitive vs. no NDRT strengthen. 
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Figure 20: Histograms of the yaw angle of the head indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) 
training data. 

5.4.1.5 Yaw rate of the head indicators 

Figure 22 shows histograms of the three yaw rates of the head indicators in the SAE Level 2 and SAE 

Level 3 training data. Visually, the yaw rate of the head and mean yaw rate of the head indicators do 

not provide a clear discrimination between the different NDRT conditions, although, within SAE Level 

2, the mean yaw rate of the head indicator indicates that participants are more likely to keep their 

head rotation stable when tasked with the cognitive NDRT than when tasked with no or the visual 

NDRT. This difference is much less pronounced for SAE Level 3, which is consistent with the yaw angle 

of the head indicators. As with previous indicators, the yaw rate of the head variability is higher for the 

visual NDRT than for the no / cognitive NDRT conditions. 
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Figure 21: Histograms of the yaw rate of the head indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 

5.4.1.6 Gaze heading and pitch indicators 

In contrast to the other indicators, Figure 22 shows scatter plots of the (inverted) gaze heading versus 

the gaze pitch angle, with the density color-encoded in a way that darker colors represent higher 

densities. The gaze heading has been inverted to allow for a more intuitive mapping of the scatter plot 

to the layout of the cockpit of the UULM driving simulator. 

The gazes of participants without NDRT are primarily focused on the windshield, with a noticeable 

concentration of gazes towards the road center ahead, and otherwise distributed between the left, 

rear, and right mirror, the tachometer, and occasionally the infotainment system. As such, participants 

without NDRT seem to regularly monitor each of the driving-related AOIs. The gazes of participants 

tasked with the cognitive NDRT are more concentrated on a single region, representing the road center, 

with less gazes towards the mirrors and the tachometer, which is consistent with literature suggesting 

an increase of gaze concentration towards the road center under cognitive load (Victor, Harbluk, & 

Engström, 2005) (Wilkie, et al., 2019). Lastly, as confirmed by the current AOI indicator (c.f., Section 

5.4.1.8), the majority of gazes of participants tasked with the visual NDRT are guided towards the 

infotainment system, with the remaining gazes focusing on the road ahead, the mirrors, and the 

tachometer. 

Comparing SAE Level 2 and SAE Level 3, the overall distribution of gazes stays mostly identical for the 

participants without and tasked with the cognitive NDRT. For participants tasked with the visual NDRT, 

there seems to be an increase of gazes towards the infotainment system for SAE Level 3, which is 

confirmed by the current AOI indicator (c.f., Section 5.4.1.8). 
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Figure 22: Scatter plots of the (inverted) gaze heading vs. gaze pitch in the SAE Level 2 (top row) and SAE Level 3 (bottom row) 
training data. 

Figure 23 shows scatter plots of the (inverted) mean gaze heading versus the mean gaze pitch angle. 

As a reminder, the mean gaze heading and gaze pitch are calculated as the average gaze heading and 

pitch over the last ten seconds (c.f., Section 5.1). For participants without NDRT, the mean gazes show 

a high concentration on the road center ahead, but with a reasonable spread along the windshield 

area and towards, but not on, the left and rear mirror, which implies that glances towards the mirrors 

and tachometer last less than a few seconds. The distribution of mean gazes for participants tasked 

with the cognitive NDRT are similar but with a much higher concentration on a smaller region around 

the road center ahead, which implies a kind of “starring” behavior, in which the participants keep 

looking straight ahead without shifting attention to other regions of the visual field. For participants 

tasked with the visual NDRT, the mean gazes are mostly located on the infotainment system, which 

gets more prominent for SAE Level 3. 
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Figure 23: Scatter plots of the (inverted) mean gaze heading vs. mean gaze pitch in the SAE Level 2 (top row) and SAE Level 3 
(bottom row) training data. 

The assumption that participants tasked with the cognitive NDRT show some sort of “starring” 

behavior is also confirmed by the gaze heading and gaze pitch variability, whose scatter plots are 

shown in Figure 24. As apparent, under the cognitive NDRT condition, participants show a clearly 

reduced variability in gaze heading and pitch, when compared to the no / visual NDRT conditions. 

Participants without NDRT show a medium variability for the gaze pitch but a high variability for the 

gaze heading, participants tasked with the visual NDRT show high variability for both gaze heading and 

pitch. Noticeable, participants tasked with the visual NDRT have a much higher minimum heading and 

pitch variability compared to the no / cognitive NDRT conditions. Overall, the gaze heading and gaze 

pitch variability seem to promise a meaningful discrimination between the different NDRT conditions, 

especially, when taking into account the correlation between the indicators. 
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Figure 24: Scatter plots of the gaze heading vs. gaze pitch variability in the SAE Level 2 (top row) and SAE Level 3 (bottom row) 
training data. 

5.4.1.7 Hands-on steering wheel indicator 

Figure 25 shows histograms of the hands-on steering wheel indicator in the SAE Level 2 and SAE Level 

3 training data. For SAE Level 2, participants without NDRT kept their hands on the steering wheel for 

99.95% of the time, participants tasked with the cognitive NDRT still for 94.21% of the time, but 

participants tasked with the visual NDRT only for 86.44% of the time. Surprisingly, this somewhat 

reverses for SAE Level 3: Participants without and tasked with the cognitive NDRT kept their hands on 

the steering wheel for 86.07% and 86.71% respectively, while participants tasked with the visual NDRT 

kept their hands on the steering wheel for 97.12% of the time. However, more research is needed to 

determine, whether this is a consequence of the SAE level or just an artifact of participants prior 

preferences. 

  

SAE Level 2 SAE Level 3 

Figure 25: Histograms of the hands-on steering wheel indicator in the SAE Level 2 (left) and SAE Level 3 training data (right). 
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5.4.1.8 Current AOI indicator 

Figure 26 shows histograms of the current AOI indicator in the SAE Level 2 and SAE Level 3 training 

data. Focusing on SAE Level 2, participants without NDRT primarily gazed at the front area (76.08%), 

followed by the “other” AO   9.03% , the rear mirror  6.82% , left mirror (3.72%), tachometer (3.51%), 

and right mirror (0.16%)3. Participants tasked with the cognitive NDRT almost exclusively gazed at the 

front AO   91.90% , followed by the “other” AO   3.34%), the tachometer (2.17%), the left mirror 

(1.38%), the rear mirror (0.89%), the infotainment system (0.25%), and almost no gazes towards the 

right mirror (0.06%). In contrast, participants tasked with the visual NDRT primarily gazed at the 

infotainment system (57.86%), followed by the front area (19.58% , the “other” AO   17.76%), the rear 

mirror (2.49%), the left mirror (1.45%), the tachometer (0.70%), and the right mirror (0.16%). For SAE 

Level 3, percentages change slightly, but the overall trend stays mostly the same: Participants without 

NDRT still primarily gazed at the front area (75.17% , followed by the “other” AO   10.28% , the rear 

mirror (5.91%), tachometer (4.28%), left mirror (3.41%), and the right mirror (0.27%). Participants 

tasked with the cognitive NDRT focused a little less on the front AO   86.93% , followed by the “other” 

AOI (6.16%), the rear mirror (3.54%), the left mirror (1.78%), the tachometer (1.11%), slightly more 

gazes towards the right mirror (0.12%), but almost no gazes towards the infotainment system (0.12%). 

Lastly, participants tasked with the visual NDRT increasingly gazed at the infotainment system (72.06%), 

followed by the “other” AO   12.74%), the front area (12.46%), the rear mirror (1.58%), the tachometer 

(0.56%), the left mirror (0.53%), and the right mirror (0.49%). 

  

SAE Level 2 SAE Level 3 

Figure 26: Histograms of the current AOI indicator in the SAE Level 2 (left) and SAE Level 3 training data (right). 

5.4.1.9 Glance duration indicators 

Figure 27 shows histograms of the three glance duration indicators in the SAE Level 2 and SAE Level 3 

training data. Participants tasked with the visual NDRT have the shortest normal and mean glance 

duration (in the range of 1-3 seconds) and the lowest variability. Participants without and tasked with 

the cognitive NDRT have longer glance duration (mostly in the range of 1-20 seconds), with the latter 

showing longer tails (up to over 100 seconds), which fits the assumption of starring behavior. 

 
3 Considering the scatter plot of the gazes (c.f., Figure 22), it is likely that gazes towards the right mirror are not 
correctly detected by the Smart Eye Pro eye-tracking system and will be incorrectly labelled as an “other” AOI. 
Similarly, gazes towards the bottom of the infotainment system may not be correctly detected and will be 
incorrectly labelled as an “other”  AOI in the same way. 
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Comparing SAE Level 2 and SAE Level 3, the histograms are mostly identical, with the (mean) glance 

duration and variability for participants without NDRT becoming slightly longer. 
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Figure 27: Histograms of the glance duration indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 
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5.4.1.10 Monitoring frequency indicators 

Figure 28 shows histograms of the three monitoring frequency indicators in the SAE Level 2 and SAE 

Level 3 training data. For participants without NDRT, the normal and mean monitoring frequency is 

well distributed over a region of approx. 0 – 1 glances per second, with a maximum at 0.5 glances per 

second. Compared to that, the distribution of glances per second for participants tasked with the 

cognitive NDRT is shifted and skewed towards lower frequencies, with a maximum of 0 glances per 

second. Once again, this hints at a kind of “starring” behavior of participants tasked with the cognitive 

NDRT, and consequently, the normal and mean monitoring frequency could provide some 

discrimination between the no and cognitive NDRT conditions. For participants tasked with the visual 

NDRT, the distribution over the monitoring frequency is similar to that of participants tasked with the 

cognitive NDRT, but with more density mass in the region of 0 – 0.5 glances per second. For SAE Level 

3, most noticeable the normal and mean monitoring frequency increases for participants tasked with 

the cognitive but decreases for participants tasked with the visual NDRT. This is consistent with the 

current AOI indicator (c.f., Section 5.4.1.8), showing that for SAE Level 3, participants tasked with the 

cognitive NDRT focus less on the front AOI, while participants tasked with the visual NDRT focus more 

on the infotainment AOI. 
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Figure 28: Histograms of the monitoring frequency indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 

  

                    

    
         
      

                     

 
  

  
  

                
         

                     

 
  

  
  

                    
           

                     

 
  

  
  

                    

                     

 
  

  
  

                
         

                     

 
  

  
  

                    
           

                     

 
  

  
  



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

55 
 

5.4.1.11 Saccade frequency indicators 

Figure 29 shows histograms of the three saccade frequency indicators in the SAE Level 2 and SAE Level 

3 training data. To start, there are no noteworthy differences between SAE Level 2 and SAE Level 3 and 

the saccade frequency variability is almost identical for all three NDRT conditions. There are, however, 

some differences in the normal and mean saccade frequencies among the NDRT conditions. While 

participants without NDRT have average normal and mean saccade frequencies of approx. 1.4 

saccades per second, the average normal and mean saccade frequencies is reduced to approx. 1.3 

saccades per second for participants tasked with the cognitive NDRT, and enlarged to approx. 2.1 

saccades per second for participants tasked with the visual NDRT. 
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Figure 29: Histograms of the saccade frequency indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 

 

5.4.1.12 Dwell percentage indicators 

Figure 30 shows histograms of the three dwell percentage indicators in the SAE Level 2 and SAE Level 

3 training data. As apparent from the normal and mean dwell percentage, participants tasked with the 

visual NDRT almost spend approx. less than 60%, participants without NDRT approx. more than 50%, 

and participants tasked with the cognitive NDRT approx. more than 75% of the last ten seconds 

focusing on driving-related AOIs, allowing for a clear discrimination between participants tasked with 

the visual NDRT and the rest. Maybe even more importantly, the normal and mean dwell percentage 

indicators allows allow for some discrimination between participants tasked with no and the cognitive 

NDRT, in that the latter are much more likely to spend 100% of the last ten seconds focusing on driving-

related AOIs.  
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When comparing SAE Level 2 and SAE Level 3, the histograms imply a decline in both mean and normal 

dwell percentage of participants tasked with the cognitive NDRT to focus 100% and a rise of 

participants tasked with the visual NDRT to focus 0% of the last ten seconds on driving-related AOIs. 

However, these differences are more likely an artifact of the comparably shorter duration of SAE Level 

3 trials, rather than a change in behavior between SAE levels. 
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Figure 30: Histograms of the dwell percentage indicators in the SAE Level 2 (top row) and SAE Level 3 (bottom row) training 
data. 

5.4.1.13 Left mirror AOI indicators 

Figure 31 and Figure 32 show histograms of the five left mirror AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. Starting with SAE Level 2, we have that participants without NDRT look at 

the left mirror with the highest frequency, accumulate the minimum (mean) time between looks to 

the left mirror and spend the most time looking into the left mirror, followed by participants tasks with 

the visual NDRT, and participants tasked with the cognitive NDRT. For the latter two, we notice 

frequent long tails in the (mean) time since the last look at the left mirror, implying that participants 

tasked with the visual and especially cognitive NDRT occasionally ignore the left mirror for several 

minutes. 
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Figure 31: Histograms of the left mirror AOI indicators in the SAE Level 2 training data. 

Comparing SAE Level 2 and SAE Level 3, the behavior of participants without NDRT stays mostly 

identical, while participants tasked with the cognitive NDRT become slightly more likely, while 

participants tasked with the visual NDRT become less likely to focus on the left mirror. 
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Figure 32: Histograms of the left mirror AOI indicators in the SAE Level 3 training data. 
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5.4.1.14 Right mirror AOI indicators 

Figure 33 and Figure 34 show histograms of the five right mirror AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. Unfortunately, the right mirror AOI indicators are limited by the ability of the 

Smart Eye Pro eye-tracking system to consistently detect glances to the right mirror, resulting in very 

long time and mean times and very low dwell percentages and frequencies for all NDRT conditions. As 

a consequence, the right mirror AOI indicators provide very little discrimination between the different 

NDRT conditions. 
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Figure 33: Histograms of the right mirror AOI indicators in the SAE Level 2 training data. 

Comparing SAE Level 2 and SAE Level 3, we have a slightly higher likelihood of participants without 

NDRT to look at the right mirror within SAE Level 2 but a slightly higher likelihood of participants tasked 

with the cognitive NDRT to look at the right mirror within SAE Level 3.  
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Figure 34: Histograms of the right mirror AOI indicators in the SAE Level 3 training data. 

5.4.1.15 Rear mirror AOI indicators 

Figure 35 and Figure 36 show histograms of the five rear mirror AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. The rear mirror AOI indicators tell a very similar story to the left mirror AOI 

indicators (c.f., Section 5.4.1.13). Starting with SAE Level 2, we have that participants without NDRT 

look at the rear mirror with the highest frequency, accumulate the minimum (mean) time between 

looks to the rear mirror and spend the most time looking into the rear mirror, followed by participants 

tasks with the visual NDRT, and participants tasked with the cognitive NDRT. For the latter two, we, 

once again, notice frequent long tails in the (mean) time since the last look at the rear mirror, implying 

that participants tasked with the visual and especially cognitive NDRT occasionally ignore the rear 

mirror for several minutes. 
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Figure 35: Histograms of the rear mirror AOI indicators in the SAE Level 2 training data. 
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Focusing on SAE Level 3, the behavior of participants without NDRT mostly stays identical. In contrast, 

participants tasked with the cognitive NDRT become more likely, while participants tasked with the 

visual NDRT become less likely to look at the rear mirror. 

SA
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Figure 36: Histograms of the rear mirror AOI indicators in the SAE Level 3 training data. 

5.4.1.16 Front AOI indicators 

Figure 37 and Figure 38 show histograms of the five front area AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. Comparing the no NDRT and cognitive NDRT conditions, we have that in both 

conditions, participants only look away from the front AOI for a short time. However, as implied by the 

front AOI dwell percentage and frequency, participants in the cognitive NDRT condition are more likely 

to keep their gaze at the front AOI, while participants in the no NDRT condition avert their gaze from 

the front AOI for a short while until returning. In the visual NDRT condition, participants only spend 

between 0% and approx. 40% focusing on the front AOI and are likely to look away for longer durations. 
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Figure 37: Histograms of the front AOI indicators in the SAE Level 2 training data. 

Comparing SAE Level 2 and SAE Level 3, participants tasked with the cognitive NDRT become a little 

less likely to spend all their time focusing on the front AOI under SAE Level 3, while participants tasked 

with the visual NDRT become more likely to stay away from the front AOI. 
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Figure 38: Histograms of the front AOI indicators in the SAE Level 3 training data. 

5.4.1.17 Tachometer AOI indicators 

Figure 39 and Figure 40 show histograms of the five tachometer AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. Starting with SAE Level 2, participants without NDRT look at the tachometer 

with the highest frequency, accumulate the minimum (mean) time between looks to the rear mirror 

and spend the most time looking into the rear mirror, closely followed by participants tasks with the 

cognitive NDRT, and, lastly, participants tasked with the visual NDRT. For the latter two, we, once again, 

notice frequent long tails in the (mean) time since the last look at the tachometer, implying that 

participants tasked with NDRTs occasionally ignore the tachometer for several minutes. 
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Figure 39: Histograms of the tachometer AOI indicators in the SAE Level 2 training data. 

Comparing SAE Level 2 and SAE Level 3, the most noticeable difference concerns participants tasked 

with the cognitive NDRT, which become less likely to look at the tachometer under SAE Level 3. The 

same is true for participants tasked with the visual NDRT, although to a lesser degree. For participants 

without NDRT, the behavior remains approx. identical. 
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Figure 40: Histograms of the tachometer AOI indicators in the SAE Level 3 training data. 

5.4.1.18 Infotainment AOI indicators 

Figure 41 and Figure 42 show histograms of the five infotainment AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. Immediately noticeable, participants tasked with the visual NDRT show very 

low normal and mean times since last looking at the infotainment system, and very high dwell 

percentages and frequencies. In combination with the front AOI indicators (c.f., Section 5.4.1.16), this 

implies that participants tasked with the visual NDRT tend to switch between the front and the 

infotainment AOI, while focusing on the latter. Overall, the infotainment AOI indicators seem to 

provide a very good discrimination between participants tasked with the visual NDRT and participants 

without or tasked with the cognitive NDRT. 
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Figure 41: Histograms of the infotainment AOI indicators in the SAE Level 2 training data. 

Although subtle, participants under the no NDRT condition are more likely to look at the infotainment 

AOI, at least a few times during a trial, while participants tasked with the cognitive NDRT rarely look at 

the infotainment system at all, as implied by the time and mean time and the dwell percentage 

indicator, especially for SAE Level 3. Otherwise, there are no noticeable differences between SAE Level 

2 and SAE Level 3.  
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Figure 42: Histograms of the infotainment AOI indicators in the SAE Level 3 training data. 

5.4.1.19 Other AOI indicators 

Lastly, Figure 43 and Figure 44 show histograms of the five other AOI indicators in the SAE Level 2 and 

SAE Level 3 training data. As a reminder, the “other” AO  represents a situation, in which the driver’s 

gaze could not be detected as looking into the left mirror, rear mirror, right mirror, tachometer, 

infotainment system, or the front area AOI, and, as such, includes miss-classifications of the Smart Eye 

Pro eye-tracking system (e.g., in the case of the right mirror and infotainment system). Participants 

without NDRT and participants tasked with the visual NDRT have a very similar normal and mean times 

since last looking at the other AOI, with the latter having a slightly higher dwell percentage, potentially 

caused by the Smart Eye Pro eye-tracking system’s inability to correctly classify looks towards the 

bottom part of the infotainment system. In contrast, participants tasked with the cognitive NDRT, show 

much higher and long-tailed (mean) times, lower dwell percentages, and frequencies, likely caused by 

the tendency of these participants to look at the road center. 
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Figure 43: Histograms of the other AOI indicators in the SAE Level 2 training data. 

Comparing SAE Level 2 and SAE Level 3, the behavior of participants without and tasked with the visual 

NDRT stays mostly identical, while the behavior of participants tasked with the cognitive NDRT 

becomes more similar. 
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Figure 44: Histograms of the other AOI indicators in the SAE Level 3 training data. 

5.4.2 SA indicator performance for discriminating between behavioral patterns (NDRT 

conditions) 

The visual inspection of the histograms provided in Section 5.4.1 provides some idea concerning the 

potential performance of an SA indicator for discriminating between the different behavioral patterns 

/ NDRT conditions. We can gain a better understanding by evaluating and comparing the isolated 

discriminative power of each individual indicator using an objective scoring criterion that measures 

how well the utilization of a single indicator helps in predicting the ground truth behavioral pattern in 

the training data.  
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Let  𝒟 = {(𝑏𝑖, 𝒇𝑖)}
𝑖=1

𝑛
 denote a dataset, comprised of 𝑛  samples (𝑏𝑖, 𝒇𝑖)  providing ground truth 

(training) data for the behavioral pattern 𝐵 and the set of 𝑛𝑓 SA indicators 𝑭 = {𝐹1, … , 𝐹𝑛𝑓}. Formally, 

we’re interested in evaluating 𝑝(𝑏𝑖|𝑓𝑗
𝑖), 𝑖 = 1,… , 𝑛, the ability of a single indicator 𝐹𝑗 ∈ 𝑭 to predict 

the correct behavioral pattern for each sample, without the use of any extra information, like e.g., 

temporal dynamics. For this, we create a set of simple (non-dynamic) BNs: To establish a baseline, we 

create ℬBaseline, consisting of a single distribution 𝑝(𝐵 ∶ 𝜽𝐵). For each indicator 𝐹𝑗 ∈ 𝑭, we create a BN 

ℬ𝐹𝑗  that defines a JPD  

𝑝 (𝐵, 𝐹𝑗 ∶ 𝜽ℬ𝐹𝑗
) = 𝑝(𝐵 ∶ 𝜽𝐵)𝑝 (𝐹𝑗|𝐵 ∶ 𝜽𝐹𝑗|𝐵). 

The parameters of the models are learnt from the dataset 𝒟, distributions over discrete variables are 

realized as categorical distributions (c.f., Section X), distributions over continuous variables are realized 

as GMMs (c.f., Section Y). As a measure of performance, we use the log-likelihood  

log 𝑝(𝑏1:𝑛: 𝜽𝐵) = log∏ 𝑝(𝑏𝑖: 𝜽𝐵)

𝑛

𝑖=1

=∑log𝑝(𝑏𝑖: 𝜽𝐵)

𝑛

𝑖=1

, 

for the baseline, and the conditional log-likelihood  

log 𝑝 (𝑏1:𝑛|𝑓𝑗
1:𝑛 ∶ 𝜽ℬ𝐹𝑗

) =∑log𝑝 (𝑏𝑖|𝑓𝑗
𝑖 ∶ 𝜽ℬ𝐹𝑗

)

𝑛

𝑖=1

=∑log
𝑝(𝑏𝑖: 𝜽𝐵)𝑝 (𝑓𝑗

𝑖|𝑏𝑖: 𝜽𝐹𝑗|𝐵)

∑ 𝑝(𝑏: 𝜽𝐵)𝑝 (𝑓𝑗
𝑖|𝑏: 𝜽𝐹𝑗|𝐵)𝑏∈Val(𝐵)

𝑛

𝑖=1

 

for each model ℬ𝐹𝑗 , 𝑗 = 1,… , 𝑛𝑓 . In general, we have that more complex models have an (unfair) 

advantage over simpler models, so we use a penalty term that penalizes the number of parameters 

⌊𝜽⌋ in the model: 

⌊𝜽⌋

2
log 𝑛. 

The full score for the baseline in then defined as 

Score(ℬBaseline ∶ 𝒟) ≜∑log𝑝(𝑏𝑖: 𝜽𝐵)

𝑛

𝑖=1

−
⌊𝜽𝐵⌋

2
log 𝑛, 

which, in this case, is equivalent to the Bayesian Information Criterion (BIC), a common scoring 

criterion for generative structure learning of (dynamic) BNs (Schwarz, 1976) (Murphy, 2012). The full 

score for the models ℬ𝐹𝑗 , 𝑗 = 1,… , 𝑛𝑓 is given by  

Score (ℬ𝐹𝑗 ∶ 𝒟) ≜∑log𝑝 (𝑏𝑖|𝑓𝑗
𝑖 ∶ 𝜽ℬ𝐹𝑗

)

𝑛

𝑖=1

−
⌊𝜽ℬ𝐹𝑗

⌋

2
log 𝑛, 

which is known as the Discriminative Bayesian Information Criterion (DBIC), a discriminative variant of 

the BIC, used for discriminative structure learning of (dynamic) BNs (Guo & Greiner, 2005) (Santafe, 

Lozano, & Larranaga, 2007). For arbitrary models, the DBIC differs from the BIC in that it uses a 

discriminative log-likelihood instead of the joint log-likelihood, therefore favoring models that perform 
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well on an inference task instead of models that perform well on representing the complete data 

(Murphy, 2012). 

We conducted the process described for the SAE Level 2 training data 𝒟Training
L2 , consisting of 𝑛L2 =

148280 samples, and the SAE Level 3 training data 𝒟Training
L3 , consisting of 𝑛L3 = 101460 samples. A 

visual overview of SA indicator performances is shown in Figure 45, the numerical scores are provided 

in Table 3. 

 

Figure 45: Overview of SA indicator performance for discriminating between behavioral patterns (NDRT conditions) on SAE 
Level 2 training data (blue) and SAE Level 3 training data (orange). The baselines for the SAE Level 2 and 3 training data are 
depicted by the blue and orange dashed line. 

The top-scoring indicators are mostly related to the attention towards the front or the combination of 

driving-related AOIs (including e.g. the mean dwell percentage on driving related AOIs, the front AOI 

dwell percentage, the dwell percentage on driving related AOIs, the time since last look at front AOI 

variability, and the mean time since last look at front AOI indicators), or the infotainment AOIs 

(including e.g., the mean time since last look at infotainment AOI, infotainment AOI dwell percentage, 

and the time since last look at infotainment AOI variability, time since last look at infotainment AOI, 

and the infotainment AOI frequency indicators). The bottom-scoring indicators are mostly related to 

the right mirror AOI (namely, the right mirror AOI frequency, right mirror AOI dwell percentage, and 

time since last look at right mirror AOI variability indicators), which is most probably explained by the 

difficulties of the Smart Eye Pro eye-tracking system to consistently detect gazes towards the right 

mirror, and sensor failure indicators (namely, the head rotation valid, pupil diameter valid, and gaze 

origin valid indicators). Comparing the difference between SAE Level 2 and SAE Level 3 scores, we see 

on average, indicators that perform well or bad on the former, also perform well or bad on the latter. 

Potentially surprising is the bad performance of the front AOI frequency indicator, which is most 

probably explained by difficulties to accurately model distributions over frequencies using GMMs. 

Table 3: Overview of indicator performance for discriminating between behavioral patterns (NDRT conditions) on SAE Level 2 
and SAE Level 3 training data, sorted from best to worst performance for the SAE Level 2 training data. Baseline score for SAE 

Level 2 training data: Score(ℬBaseline ∶ 𝒟Training
L2 ) = −162803.04659 . Baseline score for SAE Level 3 training data: 

Score(ℬBaseline ∶ 𝒟Training
L3 ) = −111399.30478. 

SA Indicator Score SAE Level 2 Score SAE Level 3 

Mean dwell percentage -70565.42044 -51229.39628 

Front AOI dwell percentage -74233.42019 -53757.61417 

Dwell percentage -74837.42041 -52865.30134 

Mean time since last look at infotainment AOI -80169.55428 -52471.09278 
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Infotainment AOI dwell percentage -81634.00932 -50383.12086 

Time since last look at front AOI variability -81886.65875 -60336.13228 

Mean time since last look at front AOI -84338.06562 -61760.12565 

Mean gaze pitch -85257.50094 -59943.19518 

Time since last look at infotainment AOI variability -85353.01527 -54904.42562 

Mean yaw angle of the head -86210.68046 -54449.29351 

Mean gaze heading -87452.27336 -62956.28166 

Time since last look at infotainment AOI -89016.35137 -57631.07075 

Infotainment AOI frequency -94198.03887 -62218.65359 

Gaze pitch variability -99447.31527 -81448.39173 

Yaw angle of the head -102563.03082 -67178.26860 

Mean glance duration -111331.21141 -71006.53727 

Glance duration -113221.70654 -74271.30769 

Current AOI -114278.31911 -72566.37586 

Glance duration variability -117080.38658 -84669.95821 

Pupil diameter variability -120673.90807 -85551.31451 

Yaw rate of the head variability -122666.56511 -92933.91976 

Time since last look at front AOI -125706.28462 -83246.95036 

Mean saccade frequency -125904.89214 -94130.56973 

Gaze pitch -126903.26488 -85489.35845 

Saccade frequency -130130.66291 -95779.47792 

Gaze heading -130291.10815 -87891.24440 

Yaw angle of the head variability -132292.84730 -104316.38887 

Gaze heading variability -132960.78711 -102211.31021 

Mean time since last look at other AOI -133098.84186 -103192.71952 

Time since last look at other AOI variability -135072.07053 -104642.88926 

Dwell percentage variability -139113.67581 -106293.91696 

Mean time since last look at rear mirror AOI -139961.10715 -101140.51882 

Time since last look at other AOI -140569.38815 -107514.72708 

Time since last look at rear mirror AOI -141417.55012 -101394.30118 

Other AOI dwell percentage -141919.16474 -107575.87485 

Mean blink frequency -142016.97648 -97707.11700 

Blink frequency -144784.36355 -99646.67688 

Mean monitoring frequency -145036.69443 -98405.66095 

Monitoring frequency -145583.18534 -99276.45669 

Mean time since last look at left mirror AOI -145653.27401 -94921.93095 

Time since last look at left mirror AOI -145871.20880 -95100.80495 

Rear mirror AOI dwell percentage -146032.74630 -105498.11235 

Mean pupil diameter -147305.61236 -103337.93194 

Blink frequency variability -148303.51509 -101704.72807 

Mean time since last look at tachometer AOI -148968.71222 -101024.23075 

Pupil diameter -150070.20517 -103415.57512 

Mean yaw rate of the head -150147.27211 -108271.40320 
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Rear mirror AOI frequency -150338.69316 -107910.58132 

Time since last look at tachometer AOI -150604.84949 -101456.56369 

Other AOI frequency -150915.44594 -110403.43499 

Time since last look at right mirror AOI -152186.94257 -106942.93357 

Mean time since last look at right mirror AOI -152265.16706 -106919.52369 

Yaw rate of the head -153221.47511 -105025.46612 

Time since last look at rear mirror AOI variability -154626.01374 -109948.37080 

Tachometer AOI dwell percentage -155170.98280 -104402.17884 

Left mirror AOI dwell percentage -156251.23312 -104365.69613 

Left mirror AOI frequency -157308.79068 -106495.86602 

Gaze direction valid -157311.80849 -107569.97333 

Time since last look at tachometer AOI variability -157624.12969 -107760.74792 

Tachometer AOI frequency -158289.72110 -107213.97755 

Hands-on steering wheel -158744.99130 -109700.84600 

Saccade frequency variability -158891.86577 -110328.35514 

Time since last look at left mirror AOI variability -159536.23891 -107204.93728 

Monitoring frequency variability -160477.99222 -110722.79247 

Gaze origin valid -160617.30665 -110376.06743 

Time since last look at right mirror AOI variability -161122.95699 -110281.22895 

Pupil diameter valid -161757.11223 -110712.05394 

Head rotation valid -162745.67443 -110412.63910 

Right mirror AOI dwell percentage -163138.13828 -115159.95153 

Front AOI frequency -167413.92060 -107168.38483 

Right mirror AOI frequency -169219.54469 -116239.45856 

 

5.4.3 SA indicator performance for discriminating between cognitive NDRT and no NDRT 

As apparent from the visual inspection in Section 5.4.1, many indicators provide information to easily 

detect the driver behavior during the visual NDRT condition. A discrimination between the cognitive 

and no NDRT condition seems to be much harder. As such, we repeated the SA indicator assessment 

in regards to their ability to only discriminate between the no NDRT and the cognitive NDRT condition.  

For this, we derived each a reduced data set ℛTraining
L2 ⊂ 𝒟Training

L2 , consisting of 𝑛L2 = 96208 samples, 

and ℛTraining
L3 ⊂ 𝒟Training

L3 , consisting of 𝑛L3 = 68652 samples, comprised only of samples for which 

𝐵𝑡 = 𝑏0 or 𝐵𝑡 = 𝑏1 and repeated the procedure described in Section 5.4.2 using the reduced datasets, 

replacing the variable 𝐵 with a reduced binary variable 𝐵∗, Val(𝐵∗) = {𝑏∗0, 𝑏∗1} to reduce the number 

of parameters to the correct necessary amount. 

A visual overview of SA indicator performances on the reduced SAE Level 2 and SAE Level 3 training 

data is shown in Figure 46, the numerical scores are provided in Table 4. 
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Figure 46: Overview of SA indicator performance for discriminating between normal behavior (no NDRT) and behavior under 
cognitive distraction (cognitive NDRT) on SAE Level 2 training data (blue) and SAE Level 3 training data (orange). The baselines 
for the SAE Level 2 and 3 training data are depicted by the blue and orange dashed line. 

Table 4: Overview of indicator performance for discriminating between normal behavior (no NDRT) and behavior under 
cognitive distraction (cognitive NDRT) on the reduced SAE Level 2 and SAE Level 3 training data, sorted from best to worst 
performance for the SAE Level 2 training data. Baseline score for the reduced SAE Level 2 training data: 

Score(ℬBaseline ∶ ℛTraining
L2 ) = −66689.14988. Baseline score for the reduced  SAE Level 3 training data: Score(ℬBaseline ∶

ℛTraining
L3 ) = −47539.55465. 

SA Indicator Score SAE Level 2 Score SAE Level 3 

Mean time since last looked at rear mirror AOI -47767.93871 -40677.86051 

Time since last looked at rear mirror AOI -48647.05945 -40576.99529 

Gaze heading variability -50381.52399 -43493.58182 

Mean monitoring frequency -52394.40053 -40633.31027 

Monitoring frequency -53075.31098 -41633.81123 

Mean glance duration -53379.48942 -40292.74972 

Glance duration -54135.08063 -40607.66652 

Mean time since last look at front AOI -54843.40909 -43238.45512 

Front AOI dwell percentage -54991.85860 -42539.72437 

Time since last look at front AOI variability -55421.77210 -42305.32561 

Mean time since last look at left mirror AOI -55439.11334 -43108.91861 

Rear mirror AOI dwell percentage -55592.98474 -46200.83945 

Time since last look at left mirror AOI -55963.07941 -43169.63270 

Rear mirror AOI frequency -56282.51764 -46819.30670 

Mean time since last look at right mirror AOI -56587.44854 -46579.20822 

Mean dwell percentage -56646.10537 -42615.45332 

Mean time since last look at infotainment AOI -56775.52726 -42803.71894 

Dwell percentage variability -56794.09140 -42826.63999 

Time since last look at right mirror AOI -56800.73993 -46496.08137 

Time since last look at infotainment AOI -56899.87915 -42841.42599 

Yaw angle head variability -58452.56286 -45999.16824 

Mean pupil diameter -58707.35511 -43600.19258 

Gaze pitch variability -58845.14815 -43981.14605 

Dwell percentage -58855.53710 -43842.11130 

Mean time since last look at other AOI -58876.17259 -45773.50519 

Glance duration variability -58944.27869 -42673.69648 
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Other AOI dwell percentage -59684.06491 -46502.99472 

Time since last look at right mirror AOI variability -59873.81323 -46659.95370 

Mean blink frequency -59946.54390 -41593.61171 

Other AOI dwell percentage -61058.59375 -45376.39210 

Blink frequency -61060.19790 -42638.59637 

Left mirror AOI dwell percentage -61126.43538 -45133.97608 

Yaw rate of the head variability -61567.77672 -46603.99166 

Left mirror AOI frequency -61986.46296 -45698.46240 

Mean gaze heading -62034.47763 -44623.26778 

Yaw angle of the head -62063.68148 -44281.64963 

Mean saccade frequency -62368.65258 -45637.03035 

Time since last look at left mirror AOI variability -62907.57347 -46207.15586 

Mean yaw angle of the head -62923.04477 -43569.62156 

Mean yaw rate of the head -63017.18790 -46825.29247 

Pupil diameter -63119.48372 -46240.41332 

Mean gaze pitch -63419.49043 -43957.05067 

Gaze heading -63459.79879 -45892.13747 

Saccade frequency -63640.50411 -46060.86904 

Saccade frequency variability -63780.05395 -46763.15102 

Current AOI -64285.75402 -46488.64947 

Time since last look at front AOI -64453.47757 -46652.61198 

Time since last look at other AOI variability -64785.00868 -47289.36122 

Tachometer AOI dwell percentage -64870.02001 -43279.46197 

Blink frequency variability -65084.52771 -46255.11968 

Time since last look at right mirror AOI variability -65156.13999 -46752.49323 

Right mirror AOI dwell percentage -65351.59465 -46463.47702 

Gaze pitch -65533.60072 -46475.75166 

Hands-on steering wheel -65618.02872 -47534.82586 

Mean time since last look at tachometer AOI -65806.88483 -44423.98474 

Time since last look at infotainment AOI variability -65838.12071 -46534.3752 

Monitoring frequency variability -65905.29974 -47199.95420 

Tachometer AOI frequency -65954.75571 -44768.73543 

Pupil diameter variability -66068.74745 -45309.37477 

Time since last look at the tachometer AOI -66103.55749 -44571.99149 

Infotainment AOI dwell percentage -66172.39502 -46067.29686 

Time since last look at tachometer AOI variability -66182.65123 -46930.17895 

Yaw rate of the head -66220.74022 -47574.93009 

Infotainment AOI frequency -66419.00268 -47872.57873 

Gaze direction valid -66525.25147 -46535.33984 

Gaze origin valid -66578.26427 -47396.28140 

Pupil diameter valid -66686.70613 -47467.23922 

Head rotation valid -66693.78895 -47542.98262 

Right mirror AOI frequency -68450.12849 -48832.96670 
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Front AOI frequency -71937.76201 -53651.57467 

 

5.4.4 Latent patterns discovery 

As implied from the visual comparison of the SA indicators and as became apparent during modelling, 

in isolation, the indicators provide sufficient information to discriminate between participants tasked 

with the visual NDRT and the rest, but lack in discrimination between participants without NDRT and 

tasked with the cognitive NDRT. As a side-analysis, we wanted to test whether we could detect finer-

grained prototypical behavioral patterns in the interaction and relationship of selected groups of SA 

indicators that summarize typical and recurring behavior characteristically for participants without 

NDRT or tasked with the cognitive or visual NDRT. 

The general idea is as follows: Let 𝐵 denote the behavioral patterns / NDRT condition and 𝑭⊂ ⊂ 𝑭 

denote a subset of SA indicators for which we want to find these prototypical patterns. Instead of 

modelling the relationship between 𝐵 and 𝑭⊂ via an observation model 𝑝(𝑭⊂
𝑡 |𝐵𝑡) (as is the case for 

the NDRT models) we mediate the information between 𝐵 and 𝑭⊂ via a discrete (latent) variable 𝑍 

that can take one of 𝑛𝑍  different values, Val(𝑍) = {𝑧1, … , 𝑧𝑛𝑍}  and use an observation model 

𝑝(𝑭⊂
𝑡 |𝑍𝑡)𝑝(𝑍𝑡|𝐵𝑡) , i.e., we force the SA indicators 𝑭⊂  to be conditionally independent of the 

behavioral patterns 𝐵 given 𝑍. As 𝑍 can only take 𝑛𝑍 different values, 𝑍 acts as a kind of bottleneck, 

where each different 𝑧𝑖 , 𝑖 = 1,… , 𝑛𝑧  summarizes information about 𝑭⊂  that provides information 

about 𝐵 . By learning the parameters of 𝑝(𝑭⊂
𝑡 |𝑍𝑡)𝑝(𝑍𝑡|𝐵𝑡)  from data, we can think of 𝑍  as an 

automatically created feature that condenses the information provided by 𝑭⊂. 

We conducted the analysis with different subsets of indicators and will focus on two notable results in 

the following. We note that the results of this analysis were not yet included in the final models 

developed in DySAM, for which we relied on structure learning methods to derive the set of important 

indicators and used GMMs to directly model their correlations (c.f., Section 5.5). That said, we believe 

that the approach described in this section is a promising direction towards an improvement of the 

models developed in DySAM (c.f. Section 5.4.4.4). 

5.4.4.1 Approach 

The conceptual structure of the model used for the analysis is as follows: Let 𝐵 denote the behavioral 

patterns / NDRT condition, 𝑍, Val(𝑍) = {𝑧1, … , 𝑧𝑛𝑍} denote a discrete latent variable to represent 𝑛𝑍 

possible prototypical patterns and 𝑭⊂ ⊂ 𝑭 denote a subset of indicators of interest. We define a DBN 

where, for any number of time slices 𝑇, the JPD 𝑝(𝐵1:𝑇 , 𝑍1:𝑇 , 𝑭⊂
1:𝑇  ∶ 𝜽) is factorized as: 

𝑝(𝑍1|𝐵1 ∶ 𝜽𝑍1|𝐵1)∏𝑝(𝑍𝑖|𝑍𝑖−1, 𝐵𝑖 ∶ 𝜽𝑍𝑖|𝑍𝑖−1,𝐵𝑖)

𝑇

𝑖=2

∏𝑝(𝐵𝑖  ∶ 𝜽𝐵𝑖)𝑝 (𝑭⊂
𝑖 |𝑍𝑖 ∶ 𝜽𝑭⊂𝑖 |𝑍𝑖)

𝑇

𝑖=1

, 

with 𝑝 (𝑭⊂
𝑖 |𝑍𝑖 ∶ 𝜽𝑭⊂𝑖 |𝑍𝑖) factorizing as  

𝑝 (𝑭⊂
𝑖 |𝑍𝑖  ∶ 𝜽𝑭⊂𝑖 |𝑍𝑖) = ∏ 𝑝(𝐹𝑗

𝑖|𝑍𝑖  ∶ 𝜽
𝐹𝑗
𝑖|𝑍𝑖
)

𝐹𝑗∈𝑭⊂

, 

i.e., we consider both the features 𝑭⊂ to be conditionally independent of the behavioral patterns 𝐵 

and the indicators in 𝑭⊂ to be conditionally independent from each other given the latent variable 𝑍. 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

73 
 

Distributions over discrete variables are encoded as categorical distributions, distributions over 

continuous variables are either encoded as Gaussian or exponential distributions (c.f., Appendix, 

Section 1.2). 

Let 𝒟 = {(𝑏𝑖, 𝒇⊂
𝑖 )}

𝑖=1

𝑛
 denote a dataset, providing ground truth data for both the behavioral patterns 

/ NDRT conditions and the selected subset of indicators (for ease of explanation, we assume the 

dataset to be comprised of a single sequence). We want to use the model to infer the sequence of 

filtered belief states  

𝑝(𝐵𝑖 , 𝑍𝑖|𝒇⊂
1:𝑖), 𝑖 = 1,… , 𝑛, 

from we can derive 𝑝(𝑍𝑖|𝒇⊂
1:𝑖) and 𝑝(𝐵𝑖|𝒇⊂

1:𝑖). The former provides a sequence of filtered belief states 

about the latent variable 𝑍, given all the evidence observed so far. As 𝑍 summarizes our information 

about 𝑭⊂, we can think of this belief state as our belief about the current prototypical pattern. The 

latter provides a sequence of filtered belief states about the behavioral patterns 𝐵 , given all the 

evidence obtained so far. As 𝑭⊂ is only accessible via 𝑍, when comparing 𝑝(𝐵𝑖|𝒇⊂
1:𝑖) with ground truth 

data 𝑏𝑖, this provides us with an estimate of whether 𝑍 did manage to summarize 𝑭⊂ in a way that 

provides meaningful information about 𝐵.  

As a general problem, we cannot readily estimate parameters involving 𝑍, i.e., 𝜽𝑍1|𝐵1, 𝜽𝑍𝑖|𝑍𝑖−1,𝐵𝑖 , and 

𝜽𝑭⊂𝑖 |𝑍𝑖 , as the assignments 𝑧1:𝑛 are not provided in the data 𝒟. With respect to our model, the dataset 

is incomplete. To perform parameter estimation with incomplete data, we use a variant of the 

Expectation-Maximization (EM-)algorithm, called hard-EM: We start by preparing a complete dataset 

𝒟0 = {{𝑏𝑖, 𝒇⊂
𝑖 , 𝑧𝑖}

𝑖=1

𝑛
} where the unknown assignments 𝑧1:𝑛 are randomly selected, 𝑧𝑖 ~ Cat (𝜽𝑍 =

{
1

𝑛𝑍
, … ,

1

𝑛𝑍
}). We then repeat the following Expectation (E-) and Maximization (M-)steps, starting with 

the M-step: 

During the M-step, we use the current version of the complete dataset 𝒟𝑘 to update the parameters 

in the model via Bayesian parameter estimation, i.e., we infer 𝜽MAP
𝑘+1 = argmax

𝜽
𝑝(𝜽|𝒟𝑘). During the 

E-step, we use the parameterize the model with 𝜽MAP
𝑘+1  and use it to estimate an updated sequence of 

assignments 𝑧1:𝑛  and create an updated complete dataset 𝒟𝑘+1 , where each assignment 𝑧𝑖  in the 

sequence 𝑧1:𝑛 is derived as 

𝑧𝑖 = argmax
𝑧
𝑝(𝑧𝑖|𝑏1:𝑛, 𝒇1:𝑛 ∶  𝜽MAP

𝑘+1). 

Here, 𝑝(𝑍𝑖|𝑏1:𝑛, 𝒇1:𝑛 ∶  𝜽MAP
𝑘+1)  is the probability distribution over 𝑍𝑖  having observed all other 

available data 𝑏1:𝑛, 𝒇1:𝑛 , obtained via smoothing (c.f. Section 1.4). Ideally, the process would be 

repeated until convergence, however, due to the large amount of data and therefore high 

computational effort required for each iteration, we stop the process after ten iterations. 

5.4.4.2 Time since last look at AOI indicators 

In DySAM, we consider seven different AOIs, the left, right, and rear mirror, the tachometer, the 

infotainment system, the front area, and an “other” AO , capturing gaze targets that do not belong to 

either of the former AOIs (c.f., Section 5.1.3.10). Among others, each of these AOIs is associated with 

an “Time since last look at AO ” indicator that represents the time passed since the last look at the 
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associated AOI (c.f., Section 5.1.3.15.1). While each of these indicators provides some discrimination 

(most notably, the time since last look at the infotainment AOI for recognizing the behavior of 

participants tasked with the visual NDRT), we are interested in whether their combination and 

sequence provides additional discriminative power that can be represented by prototypical patterns.  

As such, we used 𝑭⊂ = {𝐹37, 𝐹42, 𝐹47, 𝐹52, 𝐹57, 𝐹62, 𝐹67} and to tried to summarize the temporal and 

inter-relationships between the time since last looking at the different AOI indicators via five 

prototypical patterns, 𝑍, Val(𝑍) = {𝑧1, … , 𝑧5}, with the hope to find at least one pattern each that is 

typical for participants without NDRT and tasked with the cognitive NDRT. After estimating the 

parameters using the hard-EM process described above on the SAE Level 2 training data,  

𝒟Training
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148280, 

we used the model on the SAE Level 2 test data, 

𝒟Test
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148275, 

to infer a sequence of filtered joint belief states 

𝑝(𝐵𝑗,𝑖 , 𝑍𝑗,𝑖|𝒇⊂
𝑗,1:𝑖
), 𝑗 = 1,… ,74, 𝑖 = 1,… , 𝑛𝑗, 

from which we derived a sequence 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74, where each 𝑏̂𝑗,𝑖 = 𝔼[𝐵𝑗,𝑖|𝒇⊂
𝑗,1:𝑖
] and a 

sequence 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74, where each 𝑧̂𝑗,𝑖 = arg max
𝑧∈Val(𝑍)

𝑝(𝑍𝑗,𝑖|𝒇⊂
𝑗,1:𝑖
). Figure 47 (bottom) 

shows the ground truth behavioral patterns 𝑏1,1:𝑛1 , 𝑏2,1:𝑛2 , … , 𝑏74,1:𝑛74  as solid red line and the 

sequence 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74  as solid blue line, Figure 47 (top) shows the sequence of latent 

states 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74 as solid purple line. In both cases, the 74 different sequences in the 

test dataset are separated by vertical dotted lines. 

 

Figure 47: Comparison of ground truth and model predictions when using a latent variable 𝑍  summarizing 𝑭⊂ =

{𝐹37, 𝐹42, 𝐹47, 𝐹52, 𝐹57, 𝐹62, 𝐹67} on test data 𝒟Test
NDRT:L2. 
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Comparing the mean inferred behavioral patterns 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74  with the most probable 

latent states 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74, we see that the states 𝑧0 and 𝑧1 summarize behavior that is 

most prototypical for participants tasked with the cognitive NDRT, the states 𝑧2 and 𝑧3 summarize 

behavior that is highly prototypical for participants tasked with the visual NDRT, while the state 𝑧4 

summarizes behavior that is most prototypical for participants without NDRT. Overall, just using the 

latent variable 𝑍 as the only relevant indicator, the model achieves a surprisingly high accuracy of 

0.8425 on the test data. 

5.4.4.3 Gaze behavior indicators 

Given the characteristics and potential high discrimination of the gaze behavior indicators (c.f., Section 

5.4.1.6), we used 𝑭⊂ = {𝐹18, 𝐹19, 𝐹21, 𝐹22}  and 𝑍, Val(𝑍) = {𝑧1, … , 𝑧5}  to test whether we could 

detect prototypical gaze patterns that are typical for the different NDRT conditions. As before, we used 

the hard-EM process on the SAE Level 2 training data to estimate the parameters of the model, and 

used the model to infer the sequence of joint belief states on the SAE Level 2 test data, from which we 

derived two sequences 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74 and 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74, in the same way as 

described in Section 5.4.4.2. Figure 48 shows (bottom) shows the ground truth behavioral patterns 

𝑏1,1:𝑛1 , 𝑏2,1:𝑛2 , … , 𝑏74,1:𝑛74 as solid red line and the sequence 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74 as solid blue 

line, Figure 48 (top) shows the sequence of latent states 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74 as solid purple line, 

different sequences in the test dataset are separated by vertical dotted lines. 

 

Figure 48: Comparison of ground truth and model predictions when using a latent variable 𝑍  summarizing 𝑭⊂ =

{𝐹18, 𝐹19, 𝐹21, 𝐹22} on test data 𝒟Test
NDRT:L2. 

Comparing the mean inferred behavioral patterns 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74  with the most probable 

latent states 𝑧̂1,1:𝑛1 , 𝑧̂2,1:𝑛2 , … , 𝑧̂74,1:𝑛74 , we see that the state 𝑧0 summarizes behavior that is most 

prototypical for participants tasked with the cognitive NDRT, the states 𝑧1 and 𝑧4 summarize behavior 

that is most prototypical for participants without NDRT, while the states 𝑧2 and 𝑧3 summarize behavior 

that is highly prototypical for participants tasked with the visual NDRT. Overall, just using the latent 

variable 𝑍 as the only relevant indicator, the model achieves an accuracy of 0.7926 on the test data. 

To provide some additional insight, Figure 49 shows the mean gaze heading and pitch (left) and the 

gaze heading and pitch variability (right) for the region marked by the red circle in Figure 48. As 
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apparent, the pattern represented by the latent state 𝑧0  is characterized by a strong gaze 

concentration on the road ahead, characterized by a mean gaze heading around 0 rad, a near constant 

mean gaze pitch of approx. -0.1 rad combined with very low variabilities. We can interpret this gaze 

pattern as the “starring” behavior, hypothesized in Section 5.4.1.6.  

  

Figure 49: Mean gaze heading and pitch (left) and gaze heading and pitch variability (right) for the region marked by the red 
circle in Figure 48. 

5.4.4.4 Potential for future model improvements 

We believe that the approach described in this section is a promising direction towards an 

improvement of the models developed in DySAM.  

Despite the strong modelling assumptions, enforcing the SA indicators 𝑭⊂  to be conditionally 

independent given the latent variable 𝑍, akin to a naïve Bayesian classifier, 

𝑝(𝑭⊂
𝑖 |𝑍𝑖 ) = ∏ 𝑝(𝐹𝑗

𝑖|𝑍𝑖 )

𝐹𝑗∈𝑭⊂

, 

and using univariate Gaussian and exponential distribution that require few parameters, the analysis 

successfully discovered patterns that in isolation, help in discriminating between behavior of 

participants without NDRT, tasked with the cognitive NDRT, and tasked with the visual NDRT. 

Surprisingly, applied to the set of time since last look at AOI indicators, the resulting patterns achieved 

an accuracy of 0.8245 on the SAE Level 2 test data, which is close to the best-scoring SAE Level 2 NDRT 

model. This is a very promising result, when considering that the simplicity of the model should result 

in very robust estimation of the parameters, while preventing overfitting to the training data. 

As already stated, the results of this analysis were not yet included in the final models developed in 

DySAM, for which we relied on structure learning methods to derive the set of important indicators 

and used GMMs to directly model their correlations (c.f., Section 5.4.2). Foreshadowing the results of 

the evaluation of the SAE Level 2 NDRT model (c.f., Section 5.6.2.1), the models obtained in this 

analysis and the SAE Level 2 NDRT model show very similar strengths and weaknesses, concerning the 

successful recognition of the behavioral pattern 𝐵 in the test data, implying that both models utilize 

similar information from the SA indicators. 

The main difference between the approach discussed in this section and the NDRT model’s approach 

to directly model the correlation between indicators via GMMs is that the discovered prototypical 

patterns allow for a more dedicated interpretation. E.g., considering the gaze behavior indicators, the 

analysis discovered a prototypical pattern that represents a strong gaze concentration on the road 

center, typical, though not exclusive, for participants tasked with the cognitive NDRT.  
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To make use of prototypical patterns for a future improvements of the DySAM models, we believe that 

it would helpful to include experts on situation awareness to interpret potentially detected 

prototypical patterns and assess their potential relationship with the driver’s SA. E.g., if a long-term 

gaze concentration implies a lack of SA (at least concerning regions outside of the road center), the 

detection of such a pattern could in itself provide valuable information about the driver’s current SA. 

Given a sufficient amount of detectable and interpreted patterns, it should be able to construct models 

that provide valuable and robust online-assessments of the driver’s SA. 

5.5 Model selection 

Section 5.2 provided the conceptional structures of three different kind of models we consider for 

DySAM, the NDRT, the SAGAT Score, and the extended SAGAT Score models. For a full specification of 

these models, we still require parameters and a potential factorization of their observation models, 

𝑝(𝑭𝑡|𝐵𝑡), 𝑝(𝑭𝑡|𝑆2
𝑡), and 𝑝(𝑭𝑡|𝑆2

𝑡, 𝐵𝑡) respectively. For parameter estimation, we relied on Bayesian 

parameter estimation, as described in Section 1.5 of the appendix, for learning the structure of the 

observation models, we relied on the discriminative structure learning process, described in Section 

1.6 of the appendix.  

Discriminative structure learning in DySAM can also be interpreted as a kind of feature selection, in 

that the goal of the structure learning process is to find both a subset of relevant indicators 𝑭Rel ⊆ 𝑭 

and a factorization of an observation model over the relevant indicators, (𝑭Rel
𝑡 |𝐵𝑡), 𝑝(𝑭Rel

𝑡 |𝑆2
𝑡), and 

𝑝(𝑭Rel
𝑡 |𝑆2

𝑡, 𝐵𝑡). We’ll use the NDRT model as an example for the explana on.  

As a reminder, the NDRT models are defined as DBNs, that, for any number of time slices 𝑇, define a 

JPD 𝑝(𝑆1
1:𝑇 , 𝐵1:𝑡 , 𝑭1:𝑇) as: 

𝑝(𝑆1
1:𝑇 , 𝐵1:𝑡 , 𝑭1:𝑇) = 𝑝(𝑆1

1|𝐵1)𝑝(𝐵1)𝑝(𝑭1|𝐵1)∏𝑝(𝑆1
𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡)

𝑇

𝑡=2

, 

and shall be utilized exclusively to recursively infer filtered the belief state 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡) ∝ 𝑝(𝑆1

𝑡|𝐵𝑡)𝑝(𝒇𝑡|𝐵𝑡) ∑ 𝑝(𝐵𝑡|𝑏𝑡−1) ∑ 𝑝(𝑠𝑡−1, 𝑏𝑡−1|𝒇1:𝑡−1)

𝑠1∈Val(𝑆1)𝑏∈Val(𝐵)

. 

As such, in DySAM, we rely on discriminative structure learning using the DBIC scoring criterion (c.f., 

Appendix, Section 1.6), with the aim to learn a factorization for 𝑝(𝑭𝑡|𝐵𝑡)  that helps in solving 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡). 

Without loss of generalization, we can assume the set of indicators 𝑭 to be comprised of two mutually 

exclusive sets, 𝑭 = 𝑭Irrel ∪ 𝑭Rel, 𝑭Irrel ∩ 𝑭Rel = ∅ , where 𝑭Rel  shall contain all indicators relevant, 

while 𝑭Irrel  shall contains indicators that are irrelevant for predicting 𝑆1  and 𝐵 , such that the 

observation model 𝑝(𝑭𝑡|𝐵𝑡) can be factorized as 

𝑝(𝑭𝑡|𝐵𝑡) = 𝑝(𝑭Rel
𝑡 |𝐵𝑡)𝑝(𝑭Irrel

𝑡 ). 

Regardless of the actual factorization of 𝑝(𝑭Rel
𝑡 |𝐵𝑡)  or 𝑝(𝑭Irrel

𝑡 ) , when it comes to inferring 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡), we have that 𝑝(𝒇Irrel

𝑡 ) cancels during inference and such provides no information about 

𝐵𝑡  and consequently, 𝑆1
𝑡: 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

78 
 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡) = 

𝑝(𝑆1
𝑡, 𝐵𝑡 , 𝒇𝑡|𝒇1:𝑡−1)

∑ ∑ 𝑝(𝑠1
𝑡 , 𝑏𝑡, 𝒇𝑡|𝒇1:𝑡−1)𝑏∈Val(𝐵)𝑠1∈Val(𝑆1)

 

 = 
𝑝(𝑆1

𝑡|𝐵𝑡)𝑝(𝒇𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝒇1:𝑡−1)

∑ ∑ 𝑝(𝑠1
𝑡|𝑏𝑡)𝑝(𝒇𝑡|𝑏𝑡)𝑝(𝑏𝑡|𝒇1:𝑡−1)𝑏∈Val(𝐵)𝑠1∈Val(𝑆1)

 

 = 
𝑝(𝒇Irrel

𝑡 )𝑝(𝑆1
𝑡|𝐵𝑡)𝑝(𝒇Rel

𝑡 |𝐵𝑡)𝑝(𝐵𝑡|𝒇1:𝑡−1)

𝑝(𝒇Irrel
𝑡 )∑ 𝑝(𝒇Rel

𝑡 |𝑏𝑡)𝑝(𝑏𝑡|𝒇1:𝑡−1)𝑏∈Val(𝐵)

 

 = 𝑝(𝑆1𝑡|𝐵𝑡)
𝑝(𝒇Rel

𝑡 |𝐵𝑡)𝑝(𝐵𝑡|𝒇1:𝑡−1)

∑ 𝑝(𝒇Rel
𝑡 |𝑏𝑡)𝑝(𝑏𝑡|𝒇1:𝑡−1)𝑏∈Val(𝐵)

, 

 

where 𝑝(𝐵𝑡|𝒇1:𝑡−1) = ∑ 𝑝(𝐵𝑡|𝑏𝑡−1)∑ 𝑝(𝑠1
𝑡−1, 𝑏𝑡−1|𝒇1:𝑡−1)𝑠1∈Val(𝑆1)𝑏∈Val(𝐵) . Formally, we have that 

any 𝐹𝑡 ∈ 𝑭Irrel
𝑡  is d-separated from 𝐵𝑡  given 𝑭Rel

𝑡  (Koller). As 𝑝(𝑭Irrel
𝑡 ) cancels during inference, we can 

simply omit 𝑭Irrel  and reduce the model to only define a JPD over 𝑝(𝑆1
1:𝑇 , 𝐵1:𝑡 , 𝑭Rel

1:𝑇)  instead of 

𝑝(𝑆1
1:𝑇, 𝐵1:𝑡, 𝑭1:𝑇) , improving the computational efficiency of the inference without affecting the 

results. 

As such, discriminative structure learning in DySAM can be understood as both finding a suitable set 

of relevant features 𝑭Rel ⊆ 𝑭 and the factorization of the relevant part of the observation models 

𝑝(𝑭Rel
𝑡 |𝐵𝑡), 𝑝(𝑭Rel

𝑡 |𝑆2
𝑡), and 𝑝(𝑭Rel

𝑡 |𝑆2
𝑡, 𝐵𝑡) of the NDRT, SAGAT Score, and extended SAGAT Score 

models respectively.  n the following sections, we’ll provide an overview of the best-scoring structures 

to be used for evaluation (Section 5.6). The parameters for each model are provided in Section 

Appendix 2 of the appendix. 

5.5.1 SAE Level 2 and SAE Level 3 NDRT models 

The NDRT models rely on an observation model 

𝑝(𝑭𝑡|𝐵𝑡) = 𝑝(𝑭Eff
𝑡 |𝐵𝑡)𝑝(𝑭Ineff

𝑡 ). 

Let 𝒟 = {(𝑏𝑗,𝑖, 𝑠1
𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

𝑚

 denote a set of training data, the goal of structure learning is to find 

the set of relevant features 𝑭Eff ⊆ 𝑭  and a graph structure 𝒢  for 𝑝(𝑭Eff
𝑡 |𝐵𝑡)  that maximizes a 

discriminate scoring criterion, which, for the NDRT models, we define as 

DBIC(𝒢 ∶ 𝒟) = [∑∑log𝑝(𝑏𝑗,𝑖|𝒇𝑗,𝑖 ∶ 𝜽MAP)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

] −
⌊𝜽MAP⌋

2
log(∑𝑛𝑗

𝑚

𝑗

), 

with 𝜽MAP = max
𝜽
𝑝(𝜽|𝒟) denoting the MAP parameters of the model.  

We used the 𝒟Training
NDRT:L2 training data to learn the parameters and structure of the SAE Level 2 NDRT 

model and 𝒟Training
NDRT:L3 for the SAE Level 3 NDRT model. A graphical representation of the best-scoring 

factorizations of 𝑝(𝑭Rel
𝑡 |𝐵𝑡) for the NDRT models is shown in Figure 50.  
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 a   b  

Figure 50: DAGs of the factorization of 𝑝(𝑭Rel
𝑡 |𝐵𝑡) for the SAE Level 2 NDRT model (a) and the SAE Level 3 NDRT model (b). 

White nodes indicate query variables, shaded nodes indicate observed variables. Boxed variables indicate multivariate 
distributions. Irrelevant indicators 𝑭Irrel are omitted. 

During structure learning, CPDs over discrete variables were encoded as categorical distributions, CPDs 

over continuous variables as GMMs (c.f., Appendix 1, Section 1.2). To consider correlations between 

indicators, we allowed multiple continuous variables to be combined into multivariate GMMs. 

The best-scoring SAE Level 2 NDRT model includes twelve indicators (5) and uses the factorization 

𝑝(𝑭Rel
𝑡 |𝐵𝑡) = 𝑝(𝐹1

𝑡|𝐵𝑡)𝑝(𝐹23
𝑡 |𝐵𝑡)𝑝(𝐹9

𝑡 , 𝐹29
𝑡 , 𝐹32

𝑡 , 𝐹58
𝑡 , 𝐹48

𝑡 , 𝐹43
𝑡 , 𝐹12

𝑡 , 𝐹18
𝑡 , 𝐹21

𝑡 , 𝐹22
𝑡 |𝐵𝑡), 

where, for each 𝑏 ∈ Val(𝐵) , 𝑝(𝐹1
𝑡|𝑏𝑡)  and 𝑝(𝐹23

𝑡 |𝑏𝑡)  are categorical distributions, and 

𝑝(𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝑏𝑡) is a multivariate GMM. The MAP parameters of the 

distributions are provided in Section 2.1 of the appendix. 
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Table 5: The set of relevant indicators for the SAE Level 2 NDRT model, 𝑭Rel =
{𝐹1, 𝐹9, 𝐹12, 𝐹18, 𝐹21, 𝐹22, 𝐹23, 𝐹29, 𝐹32, 𝐹43, 𝐹48, 𝐹58}. 

Symbol Name 

𝐹1 Pupil diameter valid 

𝐹9 Mean blink frequency 

𝐹12 Mean yaw angle of the head 

𝐹18 Mean gaze heading 

𝐹21 Mean gaze pitch 

𝐹22 Gaze pitch variability 

𝐹23  ands on steering wheel 

𝐹29 Mean monitoring frequency 

𝐹32 Mean saccade frequency 

𝐹43 Mean  me since last look at right mirror AO  

𝐹48 Mean  me since last look at rear mirror AO  

𝐹58 Mean  me since last look at infotainment AO  

 

The best-scoring SAE Level 3 NDRT model includes 22 indicators (Table 6) and uses the factorization 

𝑝(𝑭Rel
𝑡 |𝐵𝑡) = 𝑝(𝐹45

𝑡 |𝐵𝑡)𝑝(𝐹17
𝑡 , 𝐹20

𝑡 |𝐵𝑡 , 𝐹4
𝑡)𝑝(𝐹7

𝑡, 𝐹58
𝑡 , 𝐹43

𝑡 |𝐵𝑡) 

  𝑝(𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝐵𝑡)𝑝(𝐹10
𝑡 , 𝐹38

𝑡 |𝐵𝑡) 

  𝑝(𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝐵𝑡)𝑝(𝐹11

𝑡 |𝐵𝑡, 𝐹2
𝑡), 

 
where, for each configuration of the discrete parents, {𝑏} ∈ Val(𝐵), {𝑏, 𝑓2} ∈ Val(𝐵) × Val(𝐹2), or 

{𝑏, 𝑓4} ∈ Val(𝐵) × Val(𝐹4), each distribution is a (multivariate) GMM. The MAP parameters of the 

distributions are provided in Section 2.2 of the appendix. 

Table 6: The set of relevant indicators for the SAE Level 3 NDRT model, 𝑭Rel =
{𝐹2, 𝐹4, 𝐹7, 𝐹9, 𝐹10, 𝐹11, 𝐹12, 𝐹16, 𝐹17, 𝐹20, 𝐹30, 𝐹32, 𝐹34, 𝐹36, 𝐹38, 𝐹42, 𝐹43, 𝐹45, 𝐹52, 𝐹58, 𝐹60, 𝐹66}. 

Symbol Name 

𝐹2  ead rota on valid 

𝐹4 Gaze direc on valid 

𝐹7 Pupil diameter variability 

𝐹9 Mean blink frequency 

𝐹10 Blink frequency variability 

𝐹11 Yaw angle of the head 

𝐹12 Mean yaw angle of the head 

𝐹16 Yaw rate of the head variability 

𝐹17 Gaze heading 

𝐹20 Gaze pitch 

𝐹30 Monitoring frequency variability 

𝐹32 Mean saccade frequency 

𝐹34 Dwell percentage 

𝐹36 Dwell percentage variability 
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𝐹38 Mean  me since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  

𝐹43 Mean  me since last look at right mirror AO  

𝐹45 Right mirror AO  dwell percentage 

𝐹52 Time since last look at tachometer AO  

𝐹58 Mean  me since last look at infotainment AO  

𝐹60  nfotainment AO  dwell percentage 

𝐹66 Front AO  frequency 

 

5.5.2 SAE Level 2 and SAE Level 3 SAGAT Score models 

The SAGAT Score models rely on an observation model 

𝑝(𝑭𝑡|𝑆𝟐
𝑡) = 𝑝(𝑭Rel

𝑡 |𝑆2
𝑡)𝑝(𝑭Irrel

𝑡 ). 

Let 𝒟 = {(𝑏𝑗,𝑖, 𝑠2
𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

𝑚

 denote a set of training data, the goal of structure learning is to find 

the set of relevant features 𝑭Eff ⊆ 𝑭  and a graph structure 𝒢  for 𝑝(𝑭Eff
𝑡 |𝑆2

𝑡)  that maximizes the 

discriminate scoring criterion 

DBIC(𝒢 ∶ 𝒟) = [∑∑log𝑝(𝑠2
𝑗,𝑖
|𝒇𝑗,𝑖 ∶ 𝜽MAP)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

] −
⌊𝜽MAP⌋

2
log(∑𝑛𝑗

𝑚

𝑗

), 

with 𝜽MAP = max
𝜽
𝑝(𝜽|𝒟) denoting the MAP parameters of the model.  

We used the 𝒟Training
SAG:L2  training data to learn the parameters and structure of the SAE Level 2 SAGAT 

Score model and 𝒟Training
SAG:L3  for the SAE Level 3 SAGAT Score model. A graphical representation of the 

best-scoring factorizations of 𝑝(𝑭Rel
𝑡 |𝐵𝑡) for the SAGAT Score models is shown in Figure 51.  

 

 
 a   b  

Figure 51: DAGs of the factorization of 𝑝(𝑭Rel
𝑡 |𝑆2

𝑡) for the SAE Level 2 SAGAT Score model (a) and the SAE Level 3 SAGAT Score 

model (b). White nodes indicate query variables, shaded nodes indicate observed variables. Boxed variables indicate 
multivariate distributions. Irrelevant indicators 𝑭Irrel are omitted. 
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During structure learning, CPDs over discrete variables were encoded as categorical distributions CPDs 

over continuous variables as GMMs (c.f., Appendix 1, Section 1.2). To consider correlations between 

indicators, we allowed multiple continuous variables to be combined into multivariate GMMs. 

The best-scoring SAE Level 2 SAGAT Score model includes seven indicators (Table 7) and uses the 

factorization 

𝑝(𝑭Rel
𝑡 |𝑆2

𝑡) = 𝑝(𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡 |𝑆2

𝑡), 

where, for each 𝑠2 ∈ Val(𝑆2), 𝑝(𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡 |𝑠2

𝑡) is a multivariate GMM. The MAP 

parameters of the distributions are provided in Section 2.3 of the appendix. 

Table 7: The set of relevant indicators for the SAE Level 2 SAGAT Score model, 𝑭Rel = {𝐹9, 𝐹29, 𝐹35, 𝐹37, 𝐹42, 𝐹52, 𝐹57}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹29 Mean monitoring frequency 

𝐹35 Mean dwell percentage 

𝐹37 Time since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  

𝐹52 Time since last look at tachometer AO  

𝐹57 Time since last look at infotainment AO  

  

The best-scoring SAE Level 3 SAGAT Score model includes nine indicators (Table 8) and uses the 

factorization 

𝑝(𝑭Rel
𝑡 |𝑆2

𝑡) = 𝑝(𝐹9
𝑡, 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 |𝑆2

𝑡)𝑝(𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡 |𝑆2
𝑡), 

where, for each 𝑠2 ∈ Val(𝑆2), 𝑝(𝐹9
𝑡, 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 |𝑠2

𝑡) and 𝑝(𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡 |𝑠2
𝑡) are multivariate 

GMM. The MAP parameters of the distributions are provided in Section 2.4 of the appendix. 

Table 8: The set of relevant indicators for the SAE Level 3 SAGAT Score model, 𝑭Rel = {𝐹9, 𝐹12, 𝐹16, 𝐹29, 𝐹31, 𝐹37, 𝐹43, 𝐹57, 𝐹58}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹12 Mean yaw angle of the head 

𝐹16 Yaw rate of the head variability 

𝐹29 Mean monitoring frequency 

𝐹31 Saccade frequency 

𝐹37 Time since last look at left mirror AO  

𝐹43 Mean  me since last look at right mirror AO  

𝐹57 Time since last look at infotainment AO  

𝐹58 Mean  me since last look at infotainment AO  
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5.5.3 Extended SAE Level 2 and SAE Level 3 SAGAT Score models 

The extended SAGAT Score models rely on an observation model 

𝑝(𝑭𝑡|𝑆𝟐
𝑡, 𝐵𝑡) = 𝑝(𝑭Rel

𝑡 |𝑆2
𝑡, 𝐵𝑡)𝑝(𝑭Irrel

𝑡 ). 

Let 𝒟 = {(𝑏𝑗,𝑖, 𝑠2
𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

𝑚

 denote the training data, the goal of structure learning is adapted to 

find the set of relevant features 𝑭Rel ⊆ 𝑭 and a graph structure 𝒢 for 𝑝(𝑭Re.
𝑡 |𝑆2

𝑡, 𝐵𝑡) that maximizes 

the discriminate scoring criterion 

DBIC(𝒢 ∶ 𝒟) = [∑∑log𝑝(𝑠2
𝑗,𝑖
|𝑏𝑗,𝑖, 𝒇𝑗,𝑖 ∶ 𝜽MAP)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

] −
⌊𝜽MAP⌋

2
log(∑𝑛𝑗

𝑚

𝑗

), 

with 𝜽MAP = max
𝜽
𝑝(𝜽|𝒟) denoting the MAP parameters of the model.  

We used the 𝒟Training
SAG:L2  training data to learn the parameters and structure of the extended SAE Level 2 

SAGAT Score model and 𝒟Training
SAG:L3  for the extended SAE Level 3 SAGAT Score model. A graphical 

representation of the best-scoring factorizations of 𝑝(𝑭Rel
𝑡 |𝐵𝑡) for the extended SAGAT Score models 

is shown in Figure 52.  

 

 

 a   b  

Figure 52: DAGs of the factorization of 𝑝(𝑭Eff
𝑡 |𝑆2

𝑡) for the extended SAE Level 2 SAGAT Score model (a) and the extended SAE 

Level 3 SAGAT Score model (b). White nodes indicate query variables, shaded nodes indicate observed variables. Boxed 
variables indicate multivariate distributions. Irrelevant indicators 𝑭Irrel are omitted. 

During structure learning, CPDs over discrete variables were once again encoded as categorical 

distributions. However, due to the limited amount of training data when conditioning on the 

behavioral patterns, CPDs over continuous variables were encoded as either exponential or Gaussian 

distributions (c.f., Appendix 1, Section 1.2). To consider correlations between indicators, we allowed 

multiple continuous variables to be combined into multivariate Gaussian distributions. 

The best-scoring extended SAE Level 2 SAGAT Score model includes 8 indicators (Table 9) and uses the 

factorization 
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𝑝(𝑭Rel
𝑡 |𝑆2

𝑡, 𝐵𝑡) = 𝑝(𝐹8
𝑡, 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡 |𝑆2
𝑡, 𝐵𝑡)𝑝(𝐹27

𝑡 |𝑆2
𝑡, 𝐵𝑡)𝑝(𝐹47

𝑡 |𝑆2
𝑡, 𝐵𝑡), 

where, for each {𝑠2, 𝑏} ∈ Val(𝑆2) × Val(𝐵) , 𝑝(𝐹8
𝑡 , 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡 |𝑆2
𝑡 , 𝐵𝑡)  is a multivariate 

Gaussian, while 𝑝(𝐹27
𝑡 |𝑠2

𝑡 , 𝑏𝑡) and 𝑝(𝐹47
𝑡 |𝑠2

𝑡 , 𝑏𝑡) are exponential distributions. The MAP parameters of 

the distributions are provided in Section 2.5 of the appendix. 

Table 9: The set of relevant indicators for the extended SAE Level 2 SAGAT Score model, 𝑭Rel =
{𝐹8, 𝐹13, 𝐹27, 𝐹32, 𝐹38, 𝐹42, 𝐹47, 𝐹53}. 

Symbol Name 

𝐹8 Blink frequency 

𝐹13 Yaw angle of the head variability 

𝐹27 Glance dura on variability 

𝐹32 Mean saccade frequency 

𝐹38 Mean  me since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  

𝐹47 Time since last look at the rear mirror AO  

𝐹53 Mean  me since last look at tachometer AO  

  

The best-scoring extended SAE Level 3 SAGAT Score model includes nine indicators (Table 10) and uses 

the factorization 

𝑝(𝑭Eff
𝑡 |𝑆2

𝑡, 𝐵𝑡) = 𝑝(𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹37
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 |𝑆2
𝑡 , 𝐵𝑡)𝑝(𝐹16

𝑡 |𝑆2
𝑡, 𝐵𝑡)𝑝(𝐹32

𝑡 |𝑆2
𝑡, 𝐵𝑡)𝑝(𝐹67

𝑡 |𝑆2
𝑡, 𝐵𝑡), 

where, for each {𝑠2, 𝑏} ∈ Val(𝑆2) × Val(𝐵) , 𝑝(𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹37
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 |𝑠2
𝑡 , 𝑏𝑡)  is a multivariate 

Gaussian, 𝑝(𝐹32
𝑡 |𝑠2

𝑡 , 𝑏𝑡) is a univariate Gaussian, and 𝑝(𝐹16
𝑡 |𝑠2

𝑡 , 𝑏𝑡) and 𝑝(𝐹67
𝑡 |𝑠2

𝑡 , 𝑏𝑡) are exponential 

distributions. The MAP parameters of the distributions are provided in Section 2.6 of the appendix. 

Table 10: The set of relevant indicators for the extended SAE Level 3 SAGAT Score model, 𝑭Rel =
{𝐹9, 𝐹16, 𝐹29, 𝐹32, 𝐹37, 𝐹43, 𝐹48, 𝐹58, 𝐹67}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹16 Yaw rate of the head variability 

𝐹29 Mean monitoring frequency 

𝐹32 Mean saccade frequency 

𝐹37 Time since last look at left mirror AO  

𝐹43 Mean  me since last look at right mirror AO  

𝐹48 Mean  me since last look at rear mirror AO  

𝐹58 Mean  me since last look at infotainment AO  

𝐹67 Time since last look at other AO  
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5.6 Evaluation results 

5.6.1 Evaluation procedure and metrics 

We will explain the evaluation procedure using the example of the SAE Level 2 NDRT model. Evaluation 

of other models follow the same overall procedure but may require an adaptation of the probability 

query and classification rules to account for changes in the overall model structure.  

As a reminder, the test set  

𝒟Test
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148275 

for the SAE Level 2 NDRT model consists of 𝑚 = 74 unseen sequences of approx. 2.5 minutes length 

(c.f. Section 5.3), each comprised of 𝑛𝑗 samples (𝑠1
𝑗,𝑖
, 𝑏𝑗,𝑖, 𝒇𝑗,𝑖), denoting the ground truth annotation 

for the binary situation awareness 𝑠1
𝑗,𝑖

, the behavioral pattern / NDRT condition 𝑏𝑗,𝑖, and the indicators 

𝒇𝑗,𝑖. For each sequence 𝑗 = 1,… ,𝑚, we use the model to answer a probability query, in the case of 

the NDRT models, to infer the conditional probability distribution  

𝑝(𝑆1
𝑗,𝑖
, 𝐵𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖), 

i.e., the probability distribution over the binary situation awareness and the behavioral patterns / 

NDRT conditions given the observable indicators from the start of the sequence until the current 

sample. From this distribution, we then derive concrete assignments as model predictions by using the 

following classification function: 

𝑠̂1
𝑗,𝑖
= argmax

𝑠1
𝑗,𝑖
𝑝(𝑠1

𝑗,𝑖
|𝒇𝑗,1:𝑗,𝑖) = argmax

𝑠1
𝑗,𝑖

∑ 𝑝(𝑠1
𝑗,𝑖
, 𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖)

𝑏∈Val(𝐵)

, 

𝑏̂𝑗,𝑖 = argmax
𝑏𝑗,𝑖

𝑝(𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖) = argmax
𝑏𝑗,𝑖

∑ 𝑝(𝑠1
𝑗,𝑖
, 𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖)

𝑠1∈Val(𝑆1)

. 

5.6.1.1 Confusion matrices 

For comparison of the ground truth and the model predictions, we then prepare confusion matrices. 

For the binary situation awareness, the confusion matrix is a 2 × 2 matrix, constructed as shown in 

Figure 53. 

  Predicted situa on awareness  

  𝑠̂11  sufficient  𝑠̂10  insufficient  Total 

Ground 

truth 

situa on 

awareness 

𝑠11 TP ≜∑∑𝕀(𝑠11
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑠̂11
𝑗,𝑖) FN ≜∑∑𝕀(𝑠11

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑠̂10
𝑗,𝑖
) ∑∑𝕀(𝑠11

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 

𝑠10  FP ≜∑∑𝕀(𝑠10
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑠̂11
𝑗,𝑖) TN ≜∑∑𝕀(𝑠10

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑠̂10
𝑗,𝑖
) ∑∑𝕀(𝑠10

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 

 Total ∑∑𝕀(𝑠̂11
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 ∑∑𝕀(𝑠̂10
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 ∑𝑛𝑗

𝑚

𝑗=1

 

Figure 53: Preparation of a 2 × 2 confusion matrix for recognizing the binary situation awareness from ground truth data and 
model answers. 
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Analogous, for the ternary behavioral patterns / NDRT conditions, the confusion matrix is a 3 × 3 

matrix, constructed as shown in Figure 54. 

  Predicted behavioral pattern  

  𝑏̂0  no NDRT  𝑏̂1  cogni ve NDRT  𝑏̂2  visual NDRT  Total 

Ground 

truth 

behavioral 

pattern 

𝑏0 ∑∑𝕀(𝑏0
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂0
𝑗,𝑖
) ∑∑𝕀(𝑏0

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂1
𝑗,𝑖
) ∑∑𝕀(𝑏0

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂2
𝑗,𝑖
) ∑∑𝕀(𝑏0

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 

𝑏1 ∑∑𝕀(𝑏1
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂0
𝑗,𝑖
) ∑∑𝕀(𝑏1

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂1
𝑗,𝑖
) ∑∑𝕀(𝑏1

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂2
𝑗,𝑖
) ∑∑𝕀(𝑏1

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 

𝑏2 ∑∑𝕀(𝑏2
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂0
𝑗,𝑖
) ∑∑𝕀(𝑏2

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂1
𝑗,𝑖
) ∑∑𝕀(𝑏2

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

𝕀(𝑏̂2
𝑗,𝑖
) ∑∑𝕀(𝑏2

𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 

 Total ∑∑𝕀(𝑏̂0
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 ∑∑𝕀(𝑏̂1
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 ∑∑𝕀(𝑏̂2
𝑗,𝑖
)

𝑛𝑗

𝑖=1

𝑚

𝑗=1

 ∑𝑛𝑗

𝑚

𝑗=1

 

Figure 54: Preparation of a 3 × 3 confusion matrix for recognizing the ternary behavioral patterns from ground truth data 
and model answers. 

5.6.1.2 Evaluation metrics 

We use the confusion matrices to derive a set of evaluation metrics. In the case of a 2 × 2 confusion 

matrix, we use the following metrics: 

• Accuracy / 0-1-Loss: Defined as the proportion of test samples correctly classified as sufficient 

and insufficient situation awareness, among the total number of samples examined: 

0 (worst) ≤ Accuracy ≜
TP TN

TP FP FN TN
≤ 1 (best). 

The accuracy is a standard measure for the performance of binary (and non-binary) classifiers 

but may provide a biased appearance in the case of non-uniformly distributed samples. E.g., if 

99% of test samples were insufficient, a trivial classifier that simply predicts each case as 

insufficient would still achieve an accuracy of 0.99.  

• Precision: Defined as the proportion of test samples classified as sufficient situation awareness 

that were correctly identified: 

0 (worst) ≤ Precision ≜
TP

TP FP
≤ 1 (best). 

A high precision indicates that samples that were classified as sufficient situation awareness 

are likely to be classified correctly, disregarding samples that were correctly or incorrectly 

classified as insufficient situation awareness. As such, precision can be interpreted as a 

measure of quality, meaning that given a high precision, we can trust the model that a sample 

classified as sufficient situation awareness truly represents sufficient situation awareness. A 

short-coming of the precision metric is that it is possible to improve the precision by 

minimizing the chance of false positives, e.g., by using a classification function  

𝑠̂1
𝑗,𝑖
= {

1, 𝑝(𝑆1
𝑗,𝑖
= 𝑠11|𝒇

𝑗,1:𝑗,𝑖) > 0.99

0, otherwise
, 
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which would decrease the number of false positives at the cost of an increase of false 

negatives. As such, the precision metric is usually not used in isolation but discussed in 

combination with the true positive rate / recall metric.  

• True positive rate (TPR) / Recall: Defined as the proportion of test samples labelled as sufficient 

situation awareness in the ground truth test data that were correctly identified: 

0 (worst) ≤ TPR ≜
TP

TP FN
≤ 1 (best). 

The TPR measures the model’s ability to correctly classify samples that were labelled as 

sufficient situation awareness, while disregarding the model’s ability to correctly identify 

samples labelled as insufficient situation awareness. A short-coming of the TPR is that it is 

possible to improve the TPR by minimizing the chance of false negatives, e.g., it is possible to 

achieve a perfect TPR by using the trivial classification function 𝑠̂1
𝑗,𝑖
= 1, which would ensure 

that there are no false negatives, at the cost of misclassifying all samples labelled as insufficient 

situation awareness. As such, the TPR is usually not used in isolation but should be discussed 

in combination with the precision or false positive rate. 

• False positive rate (FPR): Defined as the proportion of test samples labelled as insufficient 

situation awareness in the ground truth test data that were incorrectly classified as sufficient 

situation awareness: 

0 (best) ≤ FPR ≜
FP

FP TN
≤ 1 (worst). 

The FPR can be seen as the equivalent of the FPR for insufficient situation awareness, in that 

the FPR measures the model’s ability to correctly classify samples that were labelled as 

insufficient situation awareness, while disregarding the model’s ability to correctly identify 

samples labelled as sufficient situation awareness. As such, a short-coming of the FPR is that 

it is possible to improve the FPR by minimizing the chance of false positives, e.g., it is possible 

to achieve a perfect FPR by using the trivial classification function 𝑠̂1
𝑗,𝑖
= 0, which would ensure 

that there are no false positives, at the cost of misclassifying all samples labelled as sufficient 

situation awareness. As such, the TPR is usually not used in isolation but should be discussed 

in combination with the TPR, commonly in the form of Receiver Operating Characteristic 

curves. 

• 𝐹1 score: Defined as the harmonic mean of precision and recall: 

0 (worst) ≤ 𝐹1  ≜
2 ⋅ TP

2 ⋅ TP FP FN
≤ 1 (best). 

The 𝐹1 score is a common measure of predictive performance and combines both precision 

and recall in a single metric. A short-coming of the 𝐹1 score is its disregard of true negatives, 

which makes it less suitable for the assessment of (binary) classifiers, but we include it as an 

evaluation metric for the sake of completion and its common use as a summary metric for the 

predictive performance. 

In the case of higher-dimensional confusion matrices, we use the following metrics: 
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• Accuracy / 0-1-Loss: Defined as the proportion of test samples correctly classified among the 

total number of samples examined, e.g., in the case of the behavioral patterns: 

0 (worst) ≤ Accuracy ≜
∑ ∑ 𝕀(𝑏𝑗,𝑖 = 𝑏̂𝑗,𝑖)

𝑛𝑗
𝑖=1

𝑚
𝑗=1

∑ 𝑛𝑗
𝑚
𝑗=1

≤ 1 (best). 

The accuracy is a standard measure for the performance of non-binary classifiers and 

measures the ability of the model to correctly classify the different behavioral patterns in the 

test data.  

• Classification-rate: We define the classification-rate as the average probability of correctly 

classifying the ground truth: 

0 (worst) ≤ 𝐶𝑅 ≜
∑ ∑ 𝑝(𝐵𝑗,𝑖 = 𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖)

𝑛𝑗
𝑖=1

𝑚
𝑗=1

∑ 𝑛𝑗
𝑚
𝑗=1

≤ 1 (best). 

As the accuracy only considers whether 𝕀(𝑏𝑗,𝑖 = 𝑏̂𝑗,𝑖) , 𝑏̂𝑗,𝑖 = argmax
𝑏𝑗,𝑖

𝑝(𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖) , it is 

insensitive to whether the probability 𝑝(𝐵𝑗,𝑖 = 𝑏𝑗,𝑖|𝒇𝑗,1:𝑗,𝑖) of correctly predicting the ground 

truth is high or low. In contrast, the classification-rate represents the average probability with 

which the model was able to correctly predict the ground truth. A comparison of the accuracy 

with the classification-rate therefore allows an assessment of how certain the model is in its 

predictions. 

5.6.1.2.1 Receiver Operating Characteristic Curve and Area under Curve 

Fir binary classification problems, due to the inverse relationship between TPR and FPR, it is common 

to plot the TPR as a function of the FPR, obtained by deriving the TPR and FPR under different 

classification thresholds 𝛿, resulting in a so-called Receiver Operating Characteristic (ROC) curve. The 

ROC curve visualizes the sensitivity of the model performance to the somewhat arbitrary classification 

thresholds4 used for deriving concrete model answers from the probability distributions inferred by 

the models. An example is shown in Figure 55. For DySAM, the ROC curve of a model that has no ability 

to discriminate between sufficient and insufficient situation awareness would result in the dashed red 

ROC curve / line. A perfect model would achieve a TPR of 1 for a FPR of 0, resulting in a rectangular 

ROC curve.  

 
4 We note that, with the exception of preparing ROC curves, we use a single classification function for evaluation 
of the DySAM model for the derivation of evaluation metrics (c.f., Section 5.6.1), which in the case of the binary 
situation awareness 𝑆1, corresponds to a classification threshold 𝛿 = 0.5. 
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Figure 55: Exemplary ROC curves for three different hypothetical classifiers. Picture taken from 
"https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roc_curve.svg", last visited 25.02.2024. 
Picture created by “cmglee, MartinThoma” under the CC BY-SA 4.0 DEED license (https://creativecommons.org/licenses/by-
sa/4.0/). 

The ROC curve is commonly summarized by the “area under curve”  A C  statistic, integrating the area 

under the ROC. The A C summarizes the model’s ability to correctly discriminate between sufficient 

and insufficient situation awareness. An AUC of 1 represents perfect discrimination, an AUC of 0.5 

means that a model has no ability to discriminate between classes. Although higher AUC are, in 

general, better than lower A C scores, what constitutes a “good” A C score naturally depends on the 

task and the available data. For a generic rule of thumb, Hosmer et al. (2013) provide the following 

guidelines, where we reinterpret “excellent” as good and “outstanding” as very good: 

• AUC =  0.5: No discrimination 

• 0.5 <  AUC ≤  0.7: Poor discrimination 

• 0.7 <  AUC ≤  0.8: Acceptable discrimination 

• 0.8 <  AUC ≤  0.9: Good  originally “Excellent”  discrimination 

• AUC ≥  0.9: Very good  originally “Outstanding”  discrimination. 

For the preparation of ROC curves, applicable for the binary situation awareness 𝑆1, we prepare the 

model answers parameterized by a classification threshold 𝛿 =
0

100
,
1

100
, … ,

100

100
 and derive 

𝑠̂1𝛿
𝑗,𝑖
= {

1, 𝑝(𝑆1
𝑗,𝑖
= 𝑠11|𝒇

𝑗,1:𝑗,𝑖) > 𝛿

0, otherwise
 

for each threshold 𝛿, from which we can derive the threshold-dependent FPR and TPR as depicted in 

Section 5.6.1.2.  

5.6.2 Evaluation of the NDRT models 

The NDRT models use the evaluation procedure as explained in Section 5.6.1. 
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5.6.2.1 SAE Level 2 NDRT model 

After being trained on the 𝒟Ttaining
NDRT:L2 training dataset, the best-scoring SAE Level 2 NDRT model (c.f., 

Section 5.2.2) was evaluated on the 𝒟Test
NDRT:L2  test dataset, following the evaluation procedure 

explained in Section 5.6.1. The resulting confusion matrix for recognizing the ternary behavioral 

patterns is shown in Figure 56. As apparent, the SAE Level 2 NDRT model is able to correctly recognize 

a majority of the ground truth behavioral patterns. The primary problem is a confusion between 

samples belonging to participants without NDRT and participants tasked with the cognitive NDRT. In 

contrast, the model is very capable to correctly recognize samples belonging to participants tasked 

with the visual NDRT, with only minor confusion between the no and visual NDRT condition, and 

minimal confusion between the cognitive and visual NDRT condition.  

  Predicted behavioral pattern  

  𝑏̂0  no NDRT  𝑏̂1  cogni ve NDRT  𝑏̂2  visual NDRT  Total 

Ground truth behavioral 

pattern 

𝑏0 41244 6451 441 48136 

𝑏1  8507 39169 393 48069 

𝑏2  1401 114 50555 52070 

 Total 51152 45734 51389 148275 

Figure 56: 3 × 3 confusion matrix for recognizing behavioral patterns of the SAE Level 2 NDRT model on test data 𝒟Test
NDRT:L2. 

The confusion matrix for recognizing the binary situation awareness follows directly from the 

confusion matrix for recognizing the behavioral patterns and is shown in Figure 57. As to be expected, 

the problems of the SAE Level 2 NDRT model to discriminate between the behavior of participants 

without NDRT and tasked with the cognitive NDRT results in a non-neglectable amount of false 

negatives and esp. false positives. 

  Predicted situa on awareness  

  𝑠̂11  sufficient  𝑠̂10  insufficient  Total 

Ground truth situa on awareness 
𝑠11 TP ≜ 41244 FN ≜ 6892 48136 

𝑠10  FP ≜ 9908 TN ≜ 90231 100139 

 Total 51152 97123 148275 

Figure 57: 2 × 2 confusion matrix for recognizing situation awareness of the SAE Level 2 NDRT model on test data 𝒟Test
NDRT:L2. 

To provide more insight into the performance and characteristics of the SAE Level 2 NDRT model, 

Figure 58 overlays the ground truth behavioral pattern and situation awareness annotations in the test 

data with the predictions of the model for each sample. As a reminder, the test set  

𝒟Test
NDRT:L2 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 148275 

for the SAE Level 2 NDRT model consists of 𝑚 = 74 unseen sequences of approx. 2.5 minutes length 

(c.f. Section 5.3), each comprised of 𝑛𝑗 samples (𝑏𝑗,𝑖, 𝑠1
𝑗,𝑖
, 𝒇𝑗,𝑖), denoting the ground truth annotation 

for the ternary behavioral pattern / NDRT condition 𝑏𝑗,𝑖, the binary situation awareness 𝑠1
𝑗,𝑖

, and the 

indicators 𝒇𝑗,𝑖. Figure 58 shows the sequences 𝑏1,1:𝑛1 , 𝑏2,1:𝑛2 , … , 𝑏74,1:𝑛74  of ground truth behavioral 

patterns (top) and the sequences 𝑠1
1,1:𝑛1 , 𝑠1

2,1:𝑛2 , … , 𝑠1
74,1:𝑛74  of ground truth binary situation 

awareness (bottom) as solid red lines. The sequences of model predictions 𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74 

and 𝑠̂1
1,1:𝑛1 , 𝑠̂1

2,1:𝑛2 , … , 𝑠̂1
74,1:𝑛74 are shown as solid blue lines. The 74 different sequences are separated 

by vertical dotted lines. As already shown by Figure 56, the SAE Level 2 NDRT model is able to 
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consistently recognize visual NDRT behavior but has problems in discriminating between behavior 

without NDRT and cognitive NDRT behavior. Noticeable, the model occasionally rapidly changes its 

answer, especially in the case of participants without NDRT and participants tasked with the cognitive 

NDRT. These changes happen primarily, when participants show (short-term) gaze behavior that is 

characteristic for a different NDRT condition, e.g., when participants without NDRT show a high gaze 

concentration on the road center, or when participants tasked with the cognitive NDRT show a more 

balanced monitoring behavior.  

 

Figure 58: Comparison of ground truth and SAE Level 2 NDRT model predictions on test data 𝒟Test
NDRT:L2. 

Concerning evaluation metrics, when tasked with the recognition of behavioral patterns, the SAE Level 

2 NDRT model achieves an accuracy of 0.8833 and a classification rate of 0.8834 (Table 11). The 

accuracy and classification-rate are nearly identical, which implies that the model achieves very high 

probabilities for its predictions (regardless of whether these predictions are correct or incorrect). To 

put this numbers into some perspective, we can compare them to the expected metrics of an 

hypothetical baseline model that simply samples labels according to the statistical prior distribution 

over the behavioral patterns in the test data (which gives the baseline model a small advantage), here 

𝑝(𝐵𝑗,𝑖 = 𝑏0) = 0.3246, 𝑝(𝐵𝑗,𝑖 = 𝑏1) = 0.3242, and 𝑝(𝐵𝑗,𝑖 = 𝑏2) = 0.3512. We would expect such 

a baseline model to achieve both an accuracy and a classification rate of 0.3338. As such, the indicators 

used by the SAE Level 2 NDRT model improve the accuracy over the baseline by 54.95%. 

Table 11: Evaluation metrics of the SAE Level 2 NDRT model for recognizing behavioral patterns on test data 𝒟Test
NDRT:L2. 

Metric Value Baseline 

Accuracy 0.8833 0.3338 
Classi ca on rate 0.8834 0.3338 

 

When tasked with the recognition of the binary situation awareness, the SAE Level 2 NDRT model 

achieves an accuracy of 0.8867, a precision of 0.8063, a TPR of 0.8568, an FPR of 0.0989, and an 𝐹1 

score of 0.8308 (Table 12). The accuracy is slightly better than for recognizing the behavioral patterns, 

which is explained by the fact that any confusion between the behavior of participants tasked with the 
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cognitive and visual NDRT will still result in a correct classification of insufficient situation awareness. 

Given these metrics, the biggest problem of the SAE Level 2 NDRT model is a lack in precision, resulting 

from the problems to discriminate between the behavior of participants without NDRT and tasked with 

the cognitive NDRT, which is also reflected in the comparably low 𝐹1 score. To put this numbers into 

some perspective, we once again compare them to the expected metrics of an hypothetical baseline 

model that randomly samples labels according to the statistical prior distribution over the situation 

awareness in the test data, here 𝑝(𝑆1
𝑗,𝑖
= 𝑠11) = 0.3246  and 𝑝(𝑆1

𝑗,𝑖
= 𝑠10) = 0.6754 . We would 

expect such a model to produce 15626.87 true positives, each 32509.13 false positives and false 

negatives, and 67629.87 true negatives, resulting in an accuracy of 0.5614, and an identical precision, 

TPR, FPR, and 𝐹1  score of 0.3246. Due to the imbalance of sufficient and insufficient situation 

awareness in the ground truth data, the SAE Level 2 NDRT model only improves the accuracy over the 

baseline by 32.53%, however precision, TPR, FPR, and 𝐹1  score are improved by 48.17%, 53.22%, 

22.57%, and 50.62% respectively. 

Table 12: Evaluation metrics of the SAE Level 2 NDRT model for recognizing binary situation awareness on test data 𝒟Test
NDRT:L2. 

Metric Value Baseline 

Accuracy 0.8867 0.5614 
Precision 0.8063 0.3246 
TPR 0.8568 0.3246 
FPR 0.0989 0.3246 
𝐹1 score 0.8308 0.3246 

 

The ROC curve for the different classification thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
 is shown in Figure 59, 

where the TPR and FPR for each decision threshold is denoted by a black dot. As apparent, all 

classification thresholds result in a similar TPR and FPR, meaning that the model predicts its answers 

with very high probabilities (regardless of whether the answer correct or incorrect). The AUC is given 

by 0.8888, which, by Hosmer et al. (2013), would be considered a good discrimination. 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

93 
 

 

Figure 59: ROC curve for the SAE Level 2 NDRT model on test data 𝒟Test
NDRT:L2. The black dots denote the decision thresholds 

𝛿 =
0

100
,
1

100
, … ,

100

100
. The primary decision threshold used for evaluation, is denoted by a green circle. 

5.6.2.2 SAE Level 3 NDRT model 

After being trained on the 𝒟Ttaining
NDRT:L3 training dataset, the best-scoring SAE Level 3 NDRT model (c.f., 

Section 5.2.2) was evaluated on the test dataset  

𝒟Test
NDRT:L3 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 101462, 

using the evaluation procedure introduced in Section 5.6.1. The resulting confusion matrix for 

recognizing the ternary behavioral patterns is shown in Figure 60. As was the case for SAE Level 2, the 

SAE Level 3 NDRT model is able to correctly recognize the majority of the ground truth behavioral 

patterns but has problems to correctly discriminate between the behavior of participants without 

NDRT and participants tasked with the cognitive NDRT. Especially, behavior of participants tasked with 

the cognitive NDRT is misclassified as no NDRT behavior in 23.73% of the cases. In contrast, the model 

is very capable to correctly recognize samples belonging to participants tasked with the visual NDRT, 

with only minor confusion between the no and visual NDRT condition, and minimal confusion between 

the cognitive and visual NDRT condition.  

  Predicted behavioral pattern  

  𝑏̂0  no NDRT  𝑏̂1  cogni ve NDRT  𝑏̂2  visual NDRT  Total 

Ground truth behavioral 

pattern 

𝑏0 29323 5983 318 35624 

𝑏1  7836 25127 63 33026 

𝑏2  50 69 32692 32811 

 Total 37209 31179 33073 101461 

Figure 60: 3 × 3 confusion matrix for recognizing behavioral patterns of the SAE Level 3 NDRT model on test data 𝒟Test
NDRT:L3. 

The confusion matrix for recognizing the binary situation awareness is shown in Figure 61. As was the 

case for the SAE Level 2 NDRT model, the problems of the SAE Level 3 NDRT model to discriminate 
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between the behavior of participants without NDRT and the behavior of participants tasked with the 

cognitive NDRT result in a non-neglectable amount of false negatives and false positives. 

  Predicted situa on awareness  

  𝑠̂11  sufficient  𝑠̂10  insufficient  Total 

Ground truth situa on awareness 
𝑠11 TP ≜ 29323 FN ≜ 6301 35624 

𝑠10  FP ≜ 7886 TN ≜ 57951 65837 

 Total 37209 64252 101461 

Figure 61: 2 × 2 confusion matrix for recognizing situation awareness of the SAE Level 3 NDRT model on test data 𝒟Test
NDRT:L3. 

A visual comparison of the ground truth behavioral pattern / situation awareness annotations in the 

test data and the model predictions is shown in Figure 62. As was the case for the SAE Level 2 NDRT 

model, we have regions in which the model answer changes rapidly and frequently between no NDRT 

and cognitive NDRT behavior. However, we also notice an increase in longer durations of behavior 

being confused, with some sequences being misclassified completely. 

 

Figure 62: Comparison of ground truth and SAE Level 3 NDRT model predictions on test data 𝒟Test
NDRT:L3. 

Concerning evaluation metrics, when tasked with the recognition of the behavioral patterns, the SAE 

Level 3 NDRT model achieves an accuracy of 0.8589, and a classification rate 0.8587 (Table 13), which 

is slightly worse than for the SAE Level 2 NDRT model. For comparison, we would expect a hypothetical 

baseline model that randomly samples labels according to the statistical prior distribution over the 

behavioral patterns in the test data, here 𝑝(𝐵𝑗,𝑖 = 𝑏0) = 0.3511 , 𝑝(𝐵𝑗,𝑖 = 𝑏1) = 0.3255  and 

𝑝(𝐵𝑗,𝑖 = 𝑏2) = 0.3234, to achieve an accuracy and classification rate of 0.3338. As such, the SAE Level 

3 NDRT model improves the accuracy over the baseline by 52.51%, which is slightly worse than for the 

SAE Level 2 NDRT model. 

Table 13: Evaluation metrics of the SAE Level 3 NDRT model for recognizing behavioral patterns on test data 𝒟Test
NDRT:L3. 

Metric Value Baseline 

Accuracy 0.8589 0.3338 
Classi ca on rate 0.8587 0.3338 
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When tasked with the recognition of the binary situation awareness, the SAE Level 3 NDRT model 

achieves an accuracy of 0.8602, a precision of 0.7881, a TPR of 0.8231, an FPR of 0.1198, and an 𝐹1 

score of 0.8052 (Table 14). For comparison, we would expect a hypothetical baseline model that 

randomly samples labels according to the statistical prior distribution over the situation awareness in 

the test data, here 𝑝(𝑆1
𝑗,𝑖
= 𝑠11) = 0.3511 and 𝑝(𝑆1

𝑗,𝑖
= 𝑠10) = 0.6489, to achieve an accuracy of 

0.5443, and an identical precision, TPR, FPR, and 𝐹1 score of 0.3511. Due to the imbalance of sufficient 

and insufficient situation awareness in the ground truth data, the SAE Level 3 NDRT model only 

improves the accuracy over the baseline by 31.59%, while precision, TPR, FPR, and 𝐹1  score are 

improved by 43.7%, 47.2%, 23.13%, and 45.41% respectively. As to be expected from the confusion 

matrix (Figure 61), the primary problem of the SAE Level 3 NDRT model is a lack in precision, resulting 

from the problems to discriminate between the behavior of participants without NDRT and tasked with 

the cognitive NDRT. 

Table 14: Evaluation metrics of the SAE Level 3 NDRT model for recognizing binary situation awareness on test data 𝒟Test
NDRT:L3. 

Metric Value Baseline 

Accuracy 0.8602 0.5443 
Precision 0.7881 0.3511 
TPR 0.8231 0.3511 
FPR 0.1198 0.3511 
𝐹1 score 0.8052 0.3511 

 

The ROC curve for the different classification thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
 is shown in Figure 63. As 

was the case for the SAE Level 2 NDRT model (c.f., Figure 59), all decision thresholds result in a similar 

TPR and FPR, meaning that the model predicts its answers with very high probabilities (regardless of 

whether the answer correct or incorrect). The AUC is given by 0.862, which, by Hosmer et al. (2013), 

would still be considered a good discrimination. 
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Figure 63: ROC curve for the SAE Level 3 NDRT model on test data 𝒟Test
NDRT:L3. The black dots denote the decision thresholds 

𝛿 =
0

100
,
1

100
, … ,

100

100
. The primary decision threshold used for evaluation, is denoted by a green circle. 

5.6.2.3 Reinterpretation as maximum entropy Markov models 

As a reminder, the NDRT models are conceptualized as DBNs that involve a state-observation model 

(c.f., Appendix 1, Section 1.3) with dynamic model 𝑝(𝐵𝑡|𝐵𝑡−1) and observation model 𝑝(𝑭𝑡|𝐵𝑡) (c.f., 

Section 5.2.2). As apparent from Figure 58 and Figure 62, the NDRTs model are very sensitive to short-

term behavioral changes. which implies that the likelihood 𝑝(𝒇𝑡|𝐵𝑡) of the observed indicators 𝒇𝑡 in 

the observation model dominates the behavioral inertia encoded by 𝑝(𝐵𝑡|𝐵𝑡−1) . For a practical 

utilization of the NDRT models within the DySAM system, where a recognition of insufficient situation 

awareness may trigger warnings and/or interventions, we may prefer a more consistent behavior.  

To obtain such behavior of the model, we could adjust the dynamic inertia of the NDRT models by 

adjusting the parameters of 𝑝(𝐵𝑡|𝐵𝑡−1), such that the probability 𝑝(𝑏𝑖
𝑡|𝑏𝑗

𝑡−1), 𝑖 ≠ 𝑗 of transitioning 

from a state 𝑏𝑗
𝑡−1 to a different state 𝑏𝑖

𝑡  are (much) smaller. An alternative solution that does not 

require the adaptation of any parameters is a reversal of the edge direction from the behavioral 

patterns to the SA indicators (Figure 64), such that the state-observation sub-structure is changed from 

𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡) to 𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡).  

  
 a   b  

Figure 64: Unrolled network structure of the NDRT models. (a) NDRT models using a state-observation model. (b) 
Reformulation as a MEMM. 
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Such a DBN is referred to as a maximum entropy Markov model (MEMM) (Murphy, 2012). We can 

reuse the observation model 𝑝(𝑭𝑡|𝐵𝑡) of the NDRT models by defining a so-called embedded Bayesian 

classifier (Heckerman & Meek, 1997): 

𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡) ≜
𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡)

∑ 𝑝(𝑏|𝐵𝑡−1)𝑝(𝑭𝑡|𝑏)𝑏∈Val(𝐵)
, 

i.e., we define the distribution 𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡)  as a probability query using the original state-

observation model 𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡). Reformulating the NDRT models as MEMMs, we obtain the 

model structure 

𝑝(𝑆1
1:𝑇 , 𝐵1:𝑡, 𝑭1:𝑇) = 𝑝(𝑆1

1|𝐵1)𝑝(𝐵1|𝑭1)∏𝑝(𝑆1
𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡)

𝑇

𝑡=2

∏𝑝(𝑭𝑡)

𝑇

𝑡=1

, 

where  

𝑝(𝐵1|𝑭1) ≜
𝑝(𝐵1)𝑝(𝑭1|𝐵1)

∑ 𝑝(𝑏)𝑝(𝑭1|𝑏)𝑏∈Val(𝐵)
, 

and 

𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡) ≜
𝑝(𝐵𝑡|𝐵𝑡−1)𝑝(𝑭𝑡|𝐵𝑡)

∑ 𝑝(𝑏|𝐵𝑡−1)𝑝(𝑭𝑡|𝑏)𝑏∈Val(𝐵)
. 

Limited to the intended utilization of the NDRT models, this is equivalent to  

𝑝(𝑆1
1:𝑇, 𝐵1:𝑡|𝑭1:𝑇 ∶ 𝜽) = 𝑝(𝑆1

1|𝐵1)𝑝(𝐵1|𝑭1)∏𝑝(𝑆1
𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝐵𝑡−1, 𝑭𝑡)

𝑇

𝑡=2

, 

reusing the same parameters 𝜽 and observation-model factorization 𝑝(𝑭𝑡|𝐵𝑡) of the original NDRT 

models. Although the state-observation and the MEMM formulation use the same model parameters 

and the same factorization for 𝑝(𝑭𝑡|𝐵𝑡), they differ in how they apply normalizations when inferring 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡). For the original formulation, we have that  

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡) =

1

𝑍
𝑝(𝑆1

𝑡|𝐵𝑡)𝑝(𝒇𝑡|𝐵𝑡) ∑ 𝑝(𝐵𝑡|𝑏𝑡−1)𝑝(𝑏𝑡−1|𝒇1:𝑡−1)

𝑏𝑡−1∈Val(𝐵𝑡−1)

, 

with 𝑍 denoting a “global” normalization constant  

𝑍 = ∑ 𝑝(𝒇𝑡|𝑏𝑡) ∑ 𝑝(𝑏𝑡|𝑏𝑡−1)𝑝(𝑏𝑡−1|𝒇1:𝑡−1)

𝑏𝑡−1∈Val(𝐵𝑡−1)𝑏𝑡∈Val(𝐵𝑡)

. 

 For the MEMM, we have that 

𝑝(𝑆1
𝑡, 𝐵𝑡|𝒇1:𝑡) = 𝑝(𝑆1

𝑡|𝐵𝑡) ∑
1

𝑍𝑏𝑡−1
𝑝(𝒇𝑡|𝐵𝑡)𝑝(𝐵𝑡|𝑏𝑡−1)𝑝(𝑏𝑡−1|𝒇1:𝑡−1)

𝑏𝑡−1∈Val(𝐵𝑡−1)

, 

with each 𝑍𝑏𝑡−1 denoting a “local” normalization constant 
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𝑍𝑏𝑡−1 = ∑ 𝑝(𝑏|𝑏𝑡−1)𝑝(𝒇𝑡|𝑏)

𝑏𝑡∈Val(𝐵𝑡)

. 

By locally normalizing for each 𝑏𝑡−1 ∈ Val(𝐵𝑡−1), the MEMM prevents the likelihood 𝑝(𝒇𝑡|𝐵𝑡) from 

dominating 𝑝(𝐵𝑡|𝐵𝑡−1), resulting in much smoother transitions from one state to another. 

5.6.2.3.1 SAE Level 2 NDRT MEMM 

Reinterpreting the SAE Level 2 NDRT model as a MEMM and repeating the evaluation on the 𝒟Test
NDRT:L2 

test dataset, we obtain the 3 × 3 confusion matrix for recognizing the ternary behavioral patterns 

shown in Figure 65 and the 2 × 2 confusion matrix for recognizing the binary situation awareness 

shown in Figure 66. 

  Predicted behavioral pattern  

  𝑏̂0  no NDRT  𝑏̂1  cogni ve NDRT  𝑏̂2  visual NDRT  Total 

Ground 

truth behavioral pattern 

𝑏0 43443 4283 410 48136 

𝑏1  6873 40649 547 48069 

𝑏2  1232 0 50838 52070 

 Total 51548 44932 51795 148275 

Figure 65: 3 × 3 confusion matrix for recognizing behavioral patterns of the SAE Level 2 NDRT MEMM model on test data 

𝒟Test
NDRT:L2. 

Comparing these confusion matrices with the results of the original SAE Level 2 NDRT model (Figure 

56 and Figure 57), we have that misclassification of the behavior of participants without NDRT and 

tasked with the cognitive NDRT could be reduced, which results in an increase of true positives and 

negatives / a reduction of false positives and negatives.  

  Predicted situa on awareness  

  𝑠̂11  sufficient  𝑠̂10  insufficient  Total 

Ground truth situa on awareness 
𝑠11 TP ≜ 43443 FN ≜ 4693 48136 

𝑠10  FP ≜ 8062 TN ≜ 92077 100139 

 Total 51505 96770 148275 

Figure 66: 2 × 2 confusion matrix for recognizing situation awareness of the SAE Level 2 NDRT MEMM model on test data 

𝒟Test
NDRT:L2. 

Figure 67 shows the comparison of the ground truth behavioral pattern / situation awareness 

annotations in the test data and the model predictions, where, in addition to the model predictions 

𝑏̂1,1:𝑛1 , 𝑏̂2,1:𝑛2 , … , 𝑏̂74,1:𝑛74  and 𝑠̂1
1,1:𝑛1 , 𝑠̂1

2,1:𝑛2 , … , 𝑠̂1
74,1:𝑛74 ,shown as solid blue lines, we show the 

mean inferred values 𝔼[𝐵𝑗,𝑖|𝒇𝑗,1:𝑖] and 𝔼[𝑆0
𝑗,𝑖
|𝒇𝑗,1:𝑖] as dashed blue lines. Comparing Figure 67 to the 

original SAE Level 2 NDRT model (Figure 58) As apparent, the use of MEMM-like structure successfully 

filters short-term fluctuations, while still being sensitive to long-term changes. 
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Figure 67: Comparison of ground truth and SAE Level 2 NDRT MEMM model predictions on test data 𝒟Test
NDRT:L2. 

When tasked with the recognition of behavioral patterns, the reinterpretation of the SAE Level 2 NDRT 

model as a MEMM improves the accuracy by 2.67%.to 0.91 and the classification rate by 2.07% to 

0.9041 (Table 15). Compared to the hypothetical baseline of the SAE Level 2 NDRT model, the MEMM 

interpretation improves the accuracy by 57.12%. 

Table 15: Evaluation metrics of the SAE Level 2 NDRT MEMM model for recognizing behavioral patterns on test data 𝒟Test
NDRT:L2. 

Metric Value Baseline 

Accuracy 0.8833 → 0.9100 0.3338 
Classi ca on rate 0.8834 → 0.9041 0.3338 

 

When tasked with the recognition of the binary situation awareness, the reinterpretation as a MEMM 

improves all metrics (Table 16), more specifically, the accuracy is improved by 2.73% to 0.9140, the 

precision is improved by 3.72% to 0.8435, the TPR is improved by 4.57% to 0.9025, the FPR is improved 

by 1.84% down to 0.0805, and the 𝐹1 score is improved by 4.12% to 0.8720. Compared to the baseline, 

the MEMM interpretation improves accuracy, precision, TPR, FPR, and 𝐹1 score by 35.26%, 51.89%, 

57.79%, 24.41%, and 54.74%. 
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Table 16: Evaluation metrics of the SAE Level 2 NDRT model for recognizing binary situation awareness on test data 𝒟Test
NDRT:L2. 

Metric Value Baseline 

Accuracy 0.8867 → 0.9140 0.5614 
Precision 0.8063 → 0.8435 0.3246 
TPR 0.8568 → 0.9025 0.3246 
FPR 0.0989 → 0.0805 0.3246 
𝐹1 score 0.8308 → 0.8720 0.3246 

 

The ROC curve for the different classification thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
 is shown in Figure 68. 

Compared to the original SAE Level 2 NDRT model (Figure 59), the reinterpretation as a MEMM enables 

the classification thresholds to have a much stronger effect on the TPR and FPR, resulting in a more 

curve-like impression, more characteristic for an ROC. The AUC is improved to 0.9491, which, by 

Hosmer et al. (2013), would be considered a very good discrimination. 

 

Figure 68: ROC curve for the SAE Level 2 NDRT MEMM model on test data 𝒟Test
NDRT:L2. The black dots denote the decision 

thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
. The primary decision threshold used for evaluation, is denoted by a green circle. 

5.6.2.3.2 SAE Level 3 NDRT MEMM 

As was the case with the SAE Level 2 NDRT model, we can strengthen the inertia of the model by using 

a MEMM-like model structure. Reinterpreting the SAE Level 3 NDRT model as a MEMM and repeating 

the evaluation on the 𝒟Test
NDRT:L3 test dataset, we obtain the 3 × 3 confusion matrix for recognizing the 

ternary behavioral patterns shown in Figure 69 and the 2 × 2 confusion matrix for recognizing the 

binary situation awareness shown in Figure 70. 
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  Predicted behavioral pattern  

  𝑏̂0  no NDRT  𝑏̂1  cogni ve NDRT  𝑏̂2  visual NDRT  Total 

Ground truth behavioral 

pattern 

𝑏0 30624 4661 339 35624 

𝑏1  8311 24650 65 33026 

𝑏2  50 63 32698 32811 

 Total 38985 29374 33102 101461 

Figure 69: 3 × 3 confusion matrix for recognizing behavioral patterns of the SAE Level 3 NDRT MEMM model on test data 

𝒟Test
NDRT:L3. 

Comparing these confusion matrices with the results of the original SAE Level 3 NDRT model (Figure 

60 and Figure 61), we have that the misclassification of the behavior of participants without NDRT as 

behavior of participants tasked with the cognitive NDRT could be reduced, which however comes at 

the cost of an increase of the reverse. In contrast to the SAE Level 2 NDRT model. The interpretation 

of the SAE Level 3 NDRT model as a MEMM only reduces the number of false negatives, while 

increasing the number of false positives, albeit by a smaller amount. 

  Predicted situa on awareness  

  𝑠̂11  sufficient  𝑠̂10  insufficient  Total 

Ground truth situa on awareness 
𝑠11 TP ≜ 30612 FN ≜ 5012 35624 

𝑠10  FP ≜ 8259 TN ≜ 57478 65837 

 Total 38971 62490 101461 

Figure 70: 2 × 2 confusion matrix for recognizing situation awareness of the alternative SAE Level 3 NDRT MEMM model on 

test data 𝒟Test
NDRT:L3. 

Figure 71 shows the comparison of the ground truth behavioral pattern / situation awareness 

annotations in the test data and the model predictions. As was the case for the SAE Level 2 NDRT 

model, a comparison of Figure 71 and the results of the original SAE Level 3 NDRT model (Figure 62), 

the use of MEMM-like structure successfully filters most of the short-term fluctuations, while still being 

sensitive to long-term changes, resulting in an overall smoother model output. 

 

Figure 71: Comparison of ground truth and SAE Level 3 NDRT model predictions on test data 𝒟Test
NDRT:L3. 
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Although the benefits are much less pronounced than for the SAE Level 2 NDRT model, a 

reinterpretation of the SAE Level 3 NDRT model is still able to slightly improve its performance. When 

tasked with the recognition of behavioral patterns, the reinterpretation as a MEMM improves the 

accuracy by 0.82%.to 0.8671 and the classification rate by 0.3% to 0.8617 (Table 17). Compared to the 

hypothetical baseline of the SAE Level 3 NDRT model, the MEMM interpretation improves the accuracy 

by 53.33%. 

Table 17: Evaluation metrics of the SAE Level 3 NDRT MEMM model for recognizing behavioral patterns on test data 𝒟Test
NDRT:L3. 

Metric Value Baseline 

Accuracy 0.8589 → 0.8671 0.3338 
Classi ca on rate 0.8587 → 0.8617 0.3338 

 

When tasked with the recognition of the binary situation awareness, the reinterpretation as a MEMM 

improves the accuracy by 0.8% to 0.8682, the TPR by 3.62% to 0.8593, and the 𝐹1 score by 1.56% to 

0.8208, however the already weak precision is further decreased by 0.26% to 0.7855 and the FPR is 

increased by 0.72% up to 0.1270 (Table 18). Compared to the baseline, the MEMM interpretation 

improves accuracy, precision, TPR, FPR, and 𝐹1 score by 32.39%, 43.44%, 50.82%, 22.41%, and 46.97%. 

Table 18: Evaluation metrics of the SAE Level 3 NDRT model for recognizing binary situation awareness on test data 𝒟Test
NDRT:L3. 

Metric Value Baseline 

Accuracy 0.8602 → 0.8682 0.5443 
Precision 0.7881 → 0.7855 0.3511 
TPR 0.8231 → 0.8593 0.3511 
FPR 0.1198 → 0.1270 0.3511 
𝐹1 score 0.8052 → 0.8208 0.3511 

 

The ROC curve for the different classification thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
 is shown in Figure 72. 

Similar to the SAE Level 2 case, the reinterpretation as a MEMM enables the classification thresholds 

to have a much stronger effect on the TPR and FPR, when compared to the original SAE Level 3 NDRT 

model (c.f., Figure 63). The AUC is improved to 0.9121, which, by Hosmer et al. (2013), would still be 

considered a very good discrimination. 
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Figure 72: ROC curve for the SAE Level 3 NDRT MEMM model on test data 𝒟Test
NDRT:L3. The black dots denote the decision 

thresholds 𝛿 =
0

100
,
1

100
, … ,

100

100
. The primary decision threshold used for evaluation, is denoted by a green circle. 

5.6.2.4 Discussion 

The primary goal of the NDRT models is the correct discrimination of the behavior of participants 

without, tasked with the cognitive, and the visual NDRT, from which the classification of binary 

situation awareness follows by design. Concerning this task, the SAE Level 2 and SAE Level 3 NDRT 

models achieve accuracies of 0.8833 (or 0.9100 when reinterpreted as a MEMM) and 0.8589 (or 

0.8671), which we consider a promising result. This is especially true when considering that the 

structural assumptions and comparably low number of parameters should prevent overfitting of the 

models to the data, when compared to approaches like e.g., deep neural networks. The SAE Level 2 

NDRT model achieves a slightly better performance than the SAE Level 3 NDRT model, which is 

potentially explained by the fact that the former is trained on approx. 46% more data, which should 

result in more robust estimations of both parameters and structure of the model.  

In our opinion, the two main problems of the NDRT models are the remaining confusion between the 

behavior of participants without NDRT and tasked with the cognitive NDRT and, to a lesser extent, the 

sensibility of the model output to short-term changes in the SA indicators. As shown, the latter can be 

addressed e.g., by a reinterpretation of the NDRT models as MEMMs. However, whether the increased 

smoothness of the model output is important and beneficial to an assistance system, will naturally 

depend on the details of the system and the utilization, a problem that has not been addressed in the 

project. Concerning the former, although it is possible that additional data could help in further 

improving the accuracy of the models, esp. the SAE Level 3 NDRT model, we believe that the nature of 

the ground truth training and test data suggests some upper limit on the accuracy that cannot be 

exceeded without the risk of overfitting. If we compare the comparison of the ground truth and model 

predictions of the SAE Level 2 NDRT model (Figure 58) with the comparison of the ground truth and 

model predictions of the latent patterns analysis of the time since last look at AOI indicators, we see 
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that both approaches misclassify very similar regions of the test data. As such, we assume that an 

improvement of the performance of the NDRT models require a more detailed annotation of the 

ground truth data for training and evaluation. 

Using the NDRT condition as a surrogate measure of situation awareness, we treated behavior of 

participants without NDRT as sufficient and behavior of participants tasked with a cognitive or visual 

NDRT as insufficient situation awareness. By design, this approximate method of labelling is prone to 

introduce uncertainties and errors to the ground truth, generalizing both situations in which 

participants without NDRT had sufficient and insufficient situation awareness as sufficient and 

analogous for participants tasked with the cognitive and visual NDRT. Given the accuracies of the NDRT 

models, it is safe to assume that the NDRT models capture behavior that is, on average, characteristic 

for the different NDRT conditions. Whenever participants deviate from this average behavior by 

showing behavior that is more characteristic for a different, it is to some extent desirable for the 

models to misclassify such situations, as a correct classification would imply that the models overfit 

the training data.  

5.6.3 Evaluation of the SAGAT Score models 

For the evaluation of the SAGAT Score models, we adapt the evaluation procedure introduced in 

Section 5.6.1 to the utilization of SAGAT Score models and their test datasets. Using the SAE Level 2 

SAGAT Score model as an example for the explanation, the test set  

𝒟Test
SAG:L2 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11101 

for the SAE Level 2 SAGAT Score model consists of 𝑚 = 37 unseen sequences of approx. 30 seconds 

length (c.f. Section 5.3), each comprised of 𝑛𝑗  samples (𝑏𝑗,𝑖, 𝑠2
𝑗,𝑖
, 𝒇𝑗,𝑖) , denoting the ground truth 

annotation for the ternary behavioral pattern / NDRT task 𝑏𝑗,𝑖, the SAGAT scores 𝑠2
𝑗,𝑖

 and the indicators 

𝒇𝑗,𝑖. For each sequence 𝑗 = 1,… ,𝑚, we use the SAE Level 2 SAGAT Score model to infer the conditional 

probability distribution 𝑝(𝑆2
𝑗,𝑖
|𝒇𝑗,1:𝑗,𝑖), i.e., the probability distribution over the SAGAT score given the 

observable indicators from the start of the sequence until the current sample. Given this distribution, 

we use the classification function  

𝑠̂2
𝑗,𝑖
= argmax

𝑠2
𝑗,𝑖
𝑝(𝑠2

𝑗,𝑖
|𝒇𝑗,1:𝑗,𝑖) 

to derive concrete assignments as model answers. The ground truth SAGAT scores 𝑠2
𝑗,𝑖

 and model 

answers 𝑠̂2
𝑗,𝑖
, 𝑗 = 1,… ,37, 𝑖 = 1,… , 𝑛𝑗  are then summarized in a 6 × 6  confusion matrix for 

recognizing the correct SAGAT score.  

5.6.3.1 SAE Level 2 SAGAT Score model 

After being trained on the 𝒟Training
SAG:L2  training dataset, the best-scoring SAE Level 2 SAGAT Score model 

(c.f., Section 5.2.3) was evaluated on the 𝒟Test
SAG:L2 test data. The resulting confusion matrix is shown in 

Figure 73. The SAE Level 2 SAGAT Score model is able to correctly recognize the majority of the ground 

truth SAGAT scores, especially the comparably rare low and high scores, More specifically, the low 

SAGAT scores 𝑠20 (0% correct answers) and 𝑠21 (20% correct answers) are correctly recognized in 100% 

of the cases, the high SAGAT scores 𝑠24  (80% correct answers) and 𝑠25  (100% correct answers) are 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

105 
 

correctly recognized in 100% and 88.17% of the cases. In contrast, the comparable frequent medium 

SAGAT scores 𝑠22 (40% correct answers) and 𝑠23 (60% correct answers) are correctly classified in only 

67.31% and 76.23% of the cases, often confused with higher SAGAT scores. 

  Predicted SAGAT score  

  𝑠̂20  0%  𝑠̂21  20%  𝑠̂22   0%  𝑠̂23  60%  𝑠̂24  80%  𝑠̂25  100%  Total 

Ground 

truth  

SAGAT  

score 

𝑠20 1500 0 0 0 0 0 1500 

𝑠21 0 1200 0 0 0 0 1200 

𝑠22 65 0 3029 432 809 165 4500 

𝑠23 0 0 178 2059 162 302 2701 

𝑠24 0 0 0 0 600 0 600 

𝑠25 0 0 71 0 0 529 600 

 Total 1565 1200 3728 2491 1571 996 11101 

Figure 73: 6 × 6 confusion matrix of the SAE Level 2 SAGAT Score model on test data 𝒟Test
SAG:L2. 

The visual comparison of the ground truth SAGAT scores in the test data and the model predictions, 

shown in Figure 74, provides additional details. As implied by the confusion matrix, the model has 

problems in correctly recognizing medium SAGAT scores corresponding to 40% and 60% of correct 

answers. With two exceptions, sequences are only partially misclassified. Furthermore, within each 

sequence, misclassifications show some temporal stability and consistency, meaning that the model 

does not rapidly change its answers and does not switch between more than three answers.  

 

Figure 74: Comparison of ground truth and SAE Level 2 SAGAT Score model predictions on test data 𝒟Test
SAG:L2. 

Overall, the SAE Level 2 SAGAT Score model achieves an identical accuracy and classification rate of 

0.8033 (Table 19). As was the case for the NDRT models, we use a hypothetical baseline model that 

randomly samples SAGAT scores according to their statistical prior distribution in the test data for 

comparison . We would expect such a model to achieve an accuracy and classification rate of 0.2594. 

As such, the SAE Level 2 SAGAT Score model is able to improve the accuracy over the baseline by 

54.39%, which is comparable to the improvements of the NDRT models. 

Table 19: Evaluation metrics of the SAE Level 2 SAGAT Score model for on test data 𝒟Test
SAG:L2. 

Metric Value Baseline 

Accuracy 0.8033 0.2594 
Classi ca on rate 0.8033 0.2594 
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5.6.3.2 SAE Level 3 SAGAT Score model 

After being trained on the 𝒟Training
SAG:L3  training dataset, the best-scoring SAE Level 3 SAGAT Score model 

(c.f., Section 5.2.3) was evaluated on the test dataset 

𝒟Test
SAG:L3 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11100. 

The resulting 6 × 6 confusion matrix is shown in Figure 75. As was the case for the SAE Level 2 SAGAT 

Score model, the SAE Level 3 SAGAT Score model able to correctly recognize the majority of the ground 

truth SAGAT scores, albeit less consistently. The low SAGAT scores 𝑠20 (0% correct answers) and 𝑠21 

(20% correct answers) are correctly recognized in 78.48% and 73.14% of the cases respectively. The 

SAGAT score 𝑠22  (40% correct answers) is correctly recognized in 73.06% of the cases. The biggest 

problem for the SAE Level 3 SAGAT Score model is the correct recognition of the medium to high SAGAT 

scores 𝑠23 (60% correct answers) and 𝑠24 (80% correct answers), which are only correctly recognized 

in 64.11% and 62.11% of the cases. Lastly, the rare highest SAGAT score 𝑠25 (100% correct answers) is 

correctly recognized in 84.67% of the case. 

  Predicted SAGAT score  

  𝑠̂20  0%  𝑠̂21  20%  𝑠̂22   0%  𝑠̂23  60%  𝑠̂24  80%  𝑠̂25  100%  Total 

Ground 

truth  

SAGAT  

score 

𝑠20 2119 0 483 0 98 0 2700 

𝑠21 64 1536 158 13  108 99 2100 

𝑠22 192 23 1315 0 134 136 1800 

𝑠23 0 0 63 1154 583 0 1800 

𝑠24 112 134 220 324 1509 101 2400 

𝑠25 0 0 0 0 46 254 300 

 Total 2487 1693 2239 1613 2478 590 11100 

Figure 75: 6 × 6 confusion matrix of the SAE Level 3 SAGAT Score model on test data 𝒟Test
SAG:L3. 

A visual comparison of the ground truth SAGAT scores in the test data and the model predictions is 

shown in Figure 76. Although the SAE Level 3 SAGAT Score model is capable of predicting multiple 

sequences correctly, when misclassifications occur, they often occur erratically, with the model 

switching between different answers in a very short time. 

 

Figure 76: Comparison of ground truth and SAE Level 3 SAGAT Score model predictions on test data 𝒟Test
SAG:L3. 

Overall, the SAE Level 3 SAGAT Score model achieves an accuracy of 0.7105 and a classification rate of 

0.7098 (Table 20). As a comparison, a hypothetical baseline model that randomly samples SAGAT 
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scores according to their statistical prior distribution in the test data would achieve an accuracy and 

classification rate of 0.1950. As such, the SAE Level 3 SAGAT Score model is able to improve the 

accuracy over the baseline by 51.48%, which is slightly lower than for the NDRT models. 

Table 20: Evaluation metrics of the SAE Level 3 SAGAT Score model for on test data 𝒟Test
SAG:L3. 

Metric Value Baseline 

Accuracy 0.7105 0.1950 
Classi ca on rate 0.7098 0.1950 

 

5.6.3.3 Discussion 

The SAE Level 2 and SAE Level 3 SAGAT Score models only achieve somewhat mediocre accuracies of 

0.8033 and 0.7105. As was the case for the NDRT models, the SAE Level 2 SAGAT Score model achieves 

better results than the SAE Level 3 SAGAT Score model. Unlike for the NDRT models however, the 

amount of training data available was the same for both the SAE Level 2 and the SAE Level 3 SAGAT 

Score models, which could imply that a recognition of situation awareness is more difficult for SAE 

Level 3 than SAE Level 2. 

We believe that the main problem responsible for the mediocre performance of the SAGAT Score 

models is a severe lack of training data for parameter estimation and structure learning. As the SAGAT 

queries the participants concerning their knowledge about the driving situation, the resulting score 

can only be considered valid for a short period of time. As a trade-off between ensuring some validity 

of the SAGAT score and maximizing the amount of data for training and validation, we considered a 

period of one minute length (c.f., Section 5.3) before the SAGAT was conducted. Despite these efforts, 

the amount of training data available to robustly estimate the parameters and structure of the models 

remained too sparse, esp. when considering the high variability of the behavior of the participants 

before the SAGAT. As such, we believe that the accuracies of the model could be improved significantly 

by providing more training (and test) data.  

5.6.4 Evaluation of the extended SAGAT Score models 

The extended SAGAT Score models extend the SAGAT Score models by incorporating information 

about whether the participant is currently tasked with the cognitive or visual NDRT or is not performing 

any NDRT. Accordingly, for the extended SAGAT Score models, we adapt the evaluation procedure by 

using the probability query 𝑝(𝑆2
𝑗,𝑖
|𝑏𝑗,1:𝑗,𝑖, 𝒇𝑗,1:𝑗,𝑖), i.e., the conditional probability distribution over the 

SAGAT score given both the observable indicators and the behavioral patterns, from the start of the 

sequence until the current sample, and the classification function 

𝑠̂2
𝑗,𝑖
= argmax

𝑠2
𝑗,𝑖
𝑝(𝑠2

𝑗,𝑖
|𝑏𝑗,1:𝑗,𝑖, 𝒇𝑗,1:𝑗,𝑖). 

5.6.4.1 Extended SAE Level 2 SAGAT Score model 

After being trained on the 𝒟Training
SAG:L3  training dataset, the best-scoring extended SAE Level 2 SAGAT 

Score model (c.f., Section 5.2.4) was evaluated on the test dataset  

𝒟Test
SAG:L2 = {(𝑏𝑗,𝑖, 𝑠2

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

37

,∑𝑛𝑗

37

𝑗=1

= 11101. 
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The resulting 6 × 6 confusion matrix is shown in Figure 77. Compared to the SAE Level 2 SAGAT Score 

model, the extended variant keeps the 100% correct classification for the low SAGAT scores 𝑠20 (0% 

correct answers) and 𝑠21  (20% correct answers) but has problems in correctly recognizing the 

comparably rare high SAGAT scores 𝑠24 (80% correct answers) and 𝑠25 (100% correct answers), which 

are correctly recognized in only 59.5% and 76% of all cases. However, the extended SAE Level 2 SAGAT 

Score model is noticeably better in correctly recognizing the more frequent medium SAGAT scores 

scores 𝑠22  (40% correct answers) and 𝑠23  (60% correct answers), which are correctly recognized in 

88.16% and 88.12% of all cases. 

  Predicted SAGAT score  

  𝑠̂20  0%  𝑠̂21  20%  𝑠̂22   0%  𝑠̂23  60%  𝑠̂24  80%  𝑠̂25  100%  Total 

Ground 

truth  

SAGAT  

score 

𝑠20 1500 0 0 0 0 0 1500 

𝑠21 0 1200 0 0 0 0 1200 

𝑠22 0 0 3967 282 174 77 4500 

𝑠23 12 0 139 2380 105 65 2701 

𝑠24 0 0 125 118 357 0 600 

𝑠25 0 0 144 0 0 456 600 

 Total 1512 1200 4375 2780 636 598 11101 

Figure 77: 6 × 6 confusion matrix of the extended SAE Level 2 SAGAT Score model on test data 𝒟Test
SAG:L2. 

A visual comparison of the ground truth SAGAT scores in the test data and the model predictions of 

the extended SAE Level 2 SAGAT Score model is shown in Figure 78. Compared to the SAE Level 2 

SAGAT Score model (Figure 74), we have a slightly more consistent prediction, with mostly short-term 

misclassifications. As already shown by the confusion matrix, the most noticeable problem of the 

extended SAE Level 2 SAGAT Score model is a confusion concerning the high SAGAT scores 𝑠24 (80% 

correct answers) and 𝑠25  (100% correct answers), which lack both accuracy and precision, i.e., the 

ground truth SAGAT scores 𝑠24 and 𝑠25 are often misclassified and other ground truth SAGAT scores 

are often misclassified as 𝑠̂24 and 𝑠̂25. 

 

Figure 78: Comparison of ground truth and extended SAE Level 2 SAGAT Score model predictions on test data 𝒟Test
SAG:L2. 

Overall, the extended SAE Level 2 SAGAT Score model achieves an improved accuracy of 0.8882 and 

an improved classification rate of 0.8883 (Table 21), representing an improvement of 62.88% and 

62.89% over the hypothetical baseline model used for the SAE Level 2 SAGAT Score model (c.f., Section 

5.6.3.1). 
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Table 21: Evaluation metrics of the extended SAE Level 2 SAGAT Score model for on test data 𝒟Test
SAG:L2. 

Metric Value Baseline 

Accuracy 0.8033 → 0.8882 0.2594 
Classi ca on rate 0.8033 → 0.8883 0.2594 

 

5.6.4.2 Extended SAE Level 3 SAGAT Score model 

After being trained on the 𝒟Training
SAG:L3  training dataset, the best-scoring extended SAE Level 3 SAGAT 

Score model (c.f., Section 5.2.4) was evaluated on the test dataset  

𝒟Test
NDRT:L3 = {(𝑏𝑗,𝑖, 𝑠1

𝑗,𝑖
, 𝒇𝑗,𝑖)

𝑖=1

𝑛𝑗
}
𝑗=1

74

,∑𝑛𝑗

74

𝑗=1

= 101462. 

The resulting 6 × 6 confusion matrix is shown in Figure 79. Compared to the SAE Level 3 SAGAT Score 

model, the extended variant can improve all classifications, except the SAGAT score 𝑠24 (80% correct 

answers). More specifically, the low SAGAT scores 𝑠20  (0% correct answers) and 𝑠21  (20% correct 

answers) are correctly recognized in 85.57% and 89.2% of all cases, the medium SAGAT scores 𝑠22 (40% 

correct answers) and 𝑠23 (60% correct answers) are correctly recognized in 74.17% and 89.2% of all 

cases, while the highest SAGAT score 𝑠25 (100% correct answers) is correctly recognized in 81.33% of 

all cases. In contrast, the high SAGAT score 𝑠24 (80% correct answers) is correctly recognized in only 

56.33% of all cases. 

  Predicted SAGAT score  

  𝑠̂20  0%  𝑠̂21  20%  𝑠̂22   0%  𝑠̂23  60%  𝑠̂24  80%  𝑠̂25  100%  Total 

Ground 

truth  

SAGAT  

score 

𝑠20 2622 0 78 0 0 0 2700 

𝑠21 0 1875 17 200 8 0 2100 

𝑠22 0 0 1335 0 465 0 1800 

𝑠23 0 280 0 1413 107 0 1800 

𝑠24 0 465 56 372 1352 155 2400 

𝑠25 0 0 0 56 0 244 300 

 Total 2622 2620 1486 2041 1932 399 11100 

Figure 79: 6 × 6 confusion matrix of the extended SAE Level 3 SAGAT Score model on test data 𝒟Test
SAG:L3. 

A visual comparison of the ground truth SAGAT scores in the test data and the model predictions of 

the extended SAE Level 3 SAGAT Score model is shown in Figure 80. Compared to the SAE Level 3 

SAGAT Score model (Figure 76), the extended SAE Level 3 SAGAT Score model provides a more stable 

output. Once again, and as already shown by the confusion matrix, the most noticeable problem of 

the model is the confusion concerning the SAGAT score 𝑠24 (80% correct answers), which lacks both 

accuracy and precision, the ground truth SAGAT score 𝑠24  is often misclassified and other SAGAT 

scores are often misclassified as 𝑠̂25. 
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Figure 80: Comparison of ground truth and extended SAE Level 3 SAGAT Score model predictions on test data 𝒟Test
SAG:L3. 

Compared to the SAE Level 3 SAGAT Score model, the extended SAE Level 3 SAGAT Score model 

achieves an improved accuracy of 0.7965 and an improved classification rate of 0.7967 (Table 22), 

representing an improvement of 60.15% and 60.17% over the hypothetical baseline model used for 

the SAE Level 3 SAGAT Score model (c.f., Section 5.6.3.2). 

Table 22: Evaluation metrics of the extended SAE Level 3 SAGAT Score model for on test data 𝒟Test
SAG:L3. 

Metric Value Baseline 

Accuracy 0.7105 → 0.7965 0.1950 
Classi ca on rate 0.7098 → 0.7967 0.1950 

 

5.6.4.3 Discussion 

By incorporating information about whether the participant is currently tasked with the cognitive or 

visual NDRT or is not performing any NDRT, the extended SAE Level 2 and SAE Level 3 SAGAT Score 

models can significantly improve the accuracy of the (non-extended) SAE Level 2 and SAE Level by 

8.49% and 8.6% towards a more promising accuracy of 0.8882 and 0.7965 respectively. This 

improvement is however a trade-off, the extended SAGAT Score models provide better results where 

the (non-extended) SAGAT Score models had problems, but vice versa, have problems, where the 

SAGAT Score models worked better. 

Overall, the extended SAGAT Score models suffer from the same lack of data as the SAGAT Score 

models and we believe that the performance could be improved significantly, if additional data 

would become available. 

6 Conclusion 

The DySAM project has yielded significant insights into the assessment of situational awareness (SA). 

Below, we delineate several conclusions drawn from our work. 

6.1 Utilization of literature results 

Initially, our efforts were directed towards extracting indicators from scientific literature known to 

correlate with SA. We also tried to extract the distribution parameters for these indicators from the 

literature. However, this endeavor proved less fruitful than anticipated due to several challenges. The 

selection of potential indicators revealed that many literature results can only partially or not at all be 

incorporated into a real-time model for SA assessment. Some indicators lacked precise operational 
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descriptions, while others were confined to simulated environments. Other were not accessible in real-

time, but could only be calculated during post-hoc analysis. Additionally, some indicators had high 

inter-driver variability, such that it was hard to generalize the indicator. Other indicators showed a 

strong dependence on the scenario investigated in the respective study. Furthermore, some indicators 

for which the literature identified a significant relationship to SA are not discriminative enough to 

provide a benefit for a dynamic real time model. This happened when the literature study showed the 

significant relationship on a large number of measurements, but the predictive power of each 

individual measurement was very low.  

Even when utilized, the distribution parameters of an indicator derived from literature often failed to 

align with those observed in DySAM experiments, rendering purely literature-based models 

impractical.  However, the literature review did provide us with a list of potential indicators, for which 

we then estimated the distribution parameters from the experiment data. We collected these 

potential indicators and extended the list with additional ones, resulting in a total of 71 indicators, 

which were evaluated during the modelling process. 

6.2 Suitability and performance of Dynamic Bayesian Networks 

A deliberate choice was made to model SA in a generic, context-independent manner, acknowledging 

that achieving high accuracy levels for such abstract representations would be challenging. Despite 

this, our analysis found that Dynamic Bayesian Networks (DBNs) demonstrated good validity in 

capturing training data information, with model accuracies consistently ranging from 0.71 to 0.89. This 

indicates that DBNs are nonetheless expressive enough for this abstract model of SA. Based on the 

training results, our assessment is that the generalization performance of the models on the test data 

can still be increased if more data is available. 

6.3 SAGAT assessments for abstract SA modelling approach 

The DySAM project consciously decided to create models that predict a generic level of situational 

awareness (sufficient/insufficient level of situational awareness). Other approaches, such as those 

pursued by the Situware project (Osterloh, Suchan, & Weber, 2023), attempt to specifically predict 

situation awareness by determining whether the driver is aware of each piece of information that is 

relevant to the current situation. The advantages of the DySAM approach are that the situation-

relevant information does not have to be determined at runtime for every possible situation. In 

addition, the sensors required to determine the situation-specific indicators can be dispensed with. All 

that is needed are sensors for the indicators that abstract from the surrounding context. 

The disadvantage, however, is that the level of detail of the predictions with the DySAM approach is 

lower. The SAGAT questionnaire, which was used to validate the models, asks questions about specific 

information in the respective driving situation. The DySAM modeling approach was unable to create 

models that were able to predict the answer to individual SAGAT questions well. However, the 

percentage of correct answers could be predicted well with an accuracy of 0.888 at SAE level 2 and an 

accuracy of 0.797 at SAE level 3. 

6.4 Unsupervised learning of latent behavioral patterns 

The process of establishing and maintaining a suitable level of SA is susceptible to various disturbances, 

each eliciting distinct behavioral responses within this SA maintenance process. In the validation study 

described in Section 4 disturbances were introduced via a cognitive NDRT and a visual NDRT, which 
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resulted in different behavioral changes. Learning fine grained behavioral patterns that are associated 

with a good process of maintaining a suitable level of SA, respectively with a bad process of maintaining 

a suitable level of SA seems like a promising approach. In Section 5.4.4 we described how the DySAM 

modelling approach can be used to uncover such behavioral patterns. If any improvements are to be 

made to the models, we believe it makes sense to focus on identifying and evaluating these latent 

behavioral patterns. Understanding the behavioral patterns and their consequences for situation 

awareness can be beneficial for any interaction or intervention strategy pursued by the vehicle. 
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Appendix 
Appendix 1 Mathematical background 

Most of the content of this section is condensed from (Murphy, 2012), to which we refer for additional 

information. We assume the reader to be familiar with the basic rules of probability and probabilistic 

inference and will refrain from providing a definition for basic concepts, which can be found e.g., in 

(Murphy, 2012) and (Koller & Friedman, 2009). 

1.1 Notation 

Notation-wise, we will mostly follow (Murphy, 2012) and (Koller & Friedman, 2009). In general, we will 

use capital letters, like 𝑋, 𝑌, 𝑍, for random variables and bold capital letters, like 𝑿, 𝒀, 𝒁, for sets of 

variables. Specific assignments to (sets of) variables will be denoted by lowercase letters, like 𝑋 = 𝑥 

and 𝑿 = 𝒙, or just 𝑥 and 𝒙. An exception to the capital / lowercase rule are special symbols like 𝜃 and 

𝒟, where we assume the meaning of variable vs. assignment to be clear from the context. 

Throughout this report, we will be concerned with probability distributions over discrete and density 

functions over continuous random variables and we will use a lowercase 𝑝 for both and mixtures 

thereof, with the exact meaning to be given by the context, unless we want to emphasize that we 

speak of probabilities and not densities, in which case we will use a capital 𝑃 instead. 

Occasionally, we will use 𝑝(⋅) to indicate distributions over arbitrary (sets of) variables. We denote 

that a distribution 𝑝 is parameterized a parameter 𝜃 (or set of parameters 𝜽) by 𝑝(⋅ ∶ 𝜃) (or 𝑝(⋅ ∶ 𝜽)). 

If the notion of parameters is not important, we may omit them and just write 𝑝(⋅). 

For time series, we assume that the timeline is discretized into time-slices with a constant granularity 

of 100ms. We will index these time-slices by non-negative integers and will use 𝑋𝑖
𝑡 to represent the 

instantiation of a variable 𝑋𝑖  at time 𝑡. A sequences of variables 𝑋𝑖
𝑗
, 𝑋𝑖
𝑗+1
, … , 𝑋𝑖

𝑘  (or sets of variables 

𝑿𝑖
𝑗
, 𝑿𝑖
𝑗+1
, … , 𝑿𝑖

𝑘) will be denoted by 𝑋𝑖
𝑗:𝑘

 (or 𝑿𝑖
𝑗:𝑘

) and we will use 𝑋𝑖
𝑗:𝑘
= 𝑥𝑖

𝑗:𝑘
 (𝑿𝑖

𝑗:𝑘
= 𝒙𝑖

𝑗:𝑘
) or just 

𝑥𝑖
𝑗:𝑘

 (𝒙𝑖
𝑗:𝑘

) for an assignment of values to such sequences.  

To keep the notation in equations and figures short, we will denote the set of considered SA indicators 

as 𝑭  and single indicators by a generic 𝐹 , using subscripts, like 𝐹1, 𝐹2, 𝐹3  to distinguish different 

indicators. We note that indicators 𝐹𝑖 with the same subscript 𝑖 from different models will in general 

not refer to the same variable and will define their concrete meaning in auxiliary tables.  

1.2 Distributions 

The DySAM models utilize a number of discrete probability distributions and continuous density 

functions that shall be introduced in the following, with all definitions taken from (Murphy, 2012). 

Throughout this section, let 𝐴 denote a discrete random variable that can take one of 𝑛𝐴  different 

values, i.e., Val(𝐴) = {𝑎1, … , 𝑎𝑛𝐴}, 𝑋  denote a continuous random variable, and 𝑿 = {𝑋1, … , 𝑋𝑛𝑿} 

denote a set of 𝑛𝑿 > 1  continuous variables. Lastly, let 𝑩  denote an arbitrary non-empty set of 

discrete variables. For DySAM, we consider unconditioned distributions of the form 𝑝(𝐴 ∶ 𝜽𝐴) , 

𝑝(𝑋 ∶ 𝜽𝑋), and 𝑝(𝑿 ∶ 𝜽𝑿), and conditional distributions of the form 𝑝(𝐴|𝑩 ∶ 𝜽𝐴|𝑩), 𝑝(𝑋|𝑩 ∶ 𝜽𝑋|𝑩), 

and 𝑝(𝑿|𝑩 ∶ 𝜽𝑿|𝑩), each governed by their own set of parameters. 
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In the case of a discrete variable 𝐴, 𝑝(𝐴) is a probability mass function (PMF) that has to satisfy the 

properties, 0 < 𝑝(𝑎) < 1, for each 𝑎 ∈ Val(𝐴) and ∑ 𝑝(𝑎)𝑎∈Val(𝐴) = 1. In the case of a continuous 

variable 𝑋, 𝑝(𝑋) is a probability density functions (PDF), defined as the derivative of the cumulative 

distribution function of 𝑋. Given a PDF, the probability of a continuous variable being in a finite interval 

is given by  

𝑃(𝑙 < 𝑋 < 𝑢) = ∫ 𝑝(𝑥)𝑑𝑥
𝑢

𝑙

. 

It is required that 𝑝(𝑥) ≥ 0 but unlike for PMFs, it is possible that 𝑝(𝑥) > 1, as long as ∫ 𝑝(𝑥)𝑑𝑥
∞

−∞
=

1. Both PMFs and PDFs generalize to multivariate sets of variables as well as joint distributions over 

discrete and continuous variables. 

For CPDs, in general, if we have a non-empty set of discrete parents 𝑩, we can simply think of a 

distribution 𝑝(⋅ |𝑩 ∶ 𝜽⋅|𝑩) as a collection of PMFs or PDFs with each a PMF or PDF 𝑝(⋅ |𝒃 ∶ 𝜽⋅|𝒃) and a 

distinct set of parameters 𝜽⋅|𝒃 for each possible assignment 𝒃 ∈ Val(𝑩). To keep the notation short, 

in the following, we assume the absence of any parents. 

Categorical distribution 
Categorical distributions are the most straightforward method to encode a distribution over a discrete 

random variable 𝐴 that can take one of 𝑛𝐴 different values and can be understood as modeling the 

outcome of a single 𝑛𝐴 -sided dice toss. A categorical distribution over 𝐴, denoted Cat(𝐴 ∶ 𝜽𝐴), is 

governed by a set of parameters 𝜽𝐴 = {𝜃𝑎1 , … , 𝜃𝑎𝑛𝐴
} that directly encode the probability that 𝐴 = 𝑎, 

for each 𝑎 ∈ Val(𝐴), such that if 𝐴 ~ Cat(𝜽𝐴), then 𝑝(𝐴 = 𝑎𝑖 ∶ 𝜽𝐴) = 𝜃𝑎𝑖. More formally, the PMF is 

given by 

𝑝(𝑎𝑖 ∶ 𝜽𝐴) = Cat(𝐴 ∶ 𝜽𝐴) ≜∏𝜃𝑎𝑗
𝕀(𝑖=𝑗)

𝑛𝐴

𝑗=1

, 

where 𝕀(𝑒) is the indicator function, which returns 1, if 𝑒 is true, and 0 otherwise. If 𝐴 is a binary 

variable, i.e., 𝑛𝐴 = 2, the categorical distribution reduces to the Bernoulli distribution. 

Exponential distribution 
Exponential distributions are special cases of Gamma distributions used to model the duration 

between events in memoryless continuous processes, i.e., processes in which events occur 

continuously and independently at a constant average rate. Within DySAM, they are used to model 

distributions over single non-negative continuous variables, such as frequencies or durations. We 

define the exponential distribution over a continuous variable 𝑋, denoted Expon(𝑋 ∶  𝜆𝑋), in terms of 

a single rate factor 𝜽𝑋 = {𝜆𝑋}  with 𝜆𝑥 > 0 , as such, if 𝑋  is exponentially distributed, i.e., 

𝑋 ~ Expon(𝜆𝑋), then 

𝑝(𝑥 ∶ 𝜽𝑋) = {
𝜆𝑋 exp[−𝜆𝑋𝑥] , 𝑥 ≥ 0

0, 𝑥 < 0
. 

(Multivariate) Gaussian distribution 
The Gaussian or normal distribution is the most widely used distribution in statistics and machine 

learning (Murphy, 2012). In the univariate case, a Gaussian distribution over a continuous variable 𝑋, 
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denoted N(𝑋 ∶ 𝜇𝑋 , 𝜎𝑋
2) , is parameterized via mean 𝜇𝑋 = 𝔼[𝑋]  and variance 𝜎𝑋

2 = var[𝑋] . If 𝑋  is 

normally distributed, 𝑋 ~ N(𝜇𝑋, 𝜎𝑋
2), its PDF is given by 

𝑝(𝑥 ∶ 𝜽𝑋) = N(𝑋 ∶ 𝜇𝑋, 𝜎𝑋
2) ≜

1

√2𝜋𝜎𝑋
2
exp [−

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2 ]. 

Gaussian distributions generalize to sets of continuous variables 𝑿, in which case we assume 𝑿 to be 

treated as a vector of variables, such that the order of variables is fixed. In the multivariate case, a 

Gaussian distribution over 𝑿, denoted N(𝑿 ∶ 𝝁𝑿, Σ𝑿), is parameterized via a mean vector 𝝁𝑿 = 𝔼[𝑿] 

and a 𝑛𝑿 × 𝑛𝑿 covariance matrix Σ𝑿 = cov[𝑿] and the PDF is given by  

𝑝(𝒙 ∶ 𝜽𝑿) = N(𝑿 ∶ 𝝁𝑿, Σ𝑿) ≜
1

(2𝜋)𝑛 2⁄ |Σ𝑿|
1 2⁄
exp [−

1

2
(𝒙 − 𝝁𝑿)

𝑇Σ𝑿
−1(𝒙 − 𝝁𝑿)]. 

(Multivariate) Gaussian mixture models 
A Gaussian mixture model (GMM) assumes is a probabilistic model / distribution in which the 

probability density is a mixture of a finite number of Gaussian distribution. Given a sufficient number 

of mixture components, a GMM can approximate any PDF (Murphy, 2012). 

Let 𝑛𝑘 dente the number of components in the mixture model, in the univariate case, a GMM over 𝑋 

is parameterized by 𝜽𝑋 = {{𝜋𝑋𝑖, 𝜇𝑋𝑖 , 𝜎𝑋𝑖
2 }
𝑖=1

𝑛𝑘
}, comprised of a mixture weight 𝜋𝑋𝑖, and the mean 𝜇𝑋𝑖  

and variance 𝜎𝑋𝑖
2  for each of the 𝑛𝑘 Gaussian components. To ensure a valid PDF, we require that 0 <

𝜋𝑋𝑖 < 1 and ∑ 𝜋𝑋𝑖
𝑛𝑘
1𝑖 = 1. The PDF is given by  

𝑝(𝑥 ∶ 𝜽𝑋) ≜∑𝜋𝑋𝑖𝒩(𝜇𝑋𝑖, 𝜎𝑋𝑖
2 )

𝑛𝑘

𝑖=1

. 

Likewise, a multivariate GMM over 𝑿 is parameterized by 𝜽𝑿 = {{𝜋𝑿𝑖, 𝝁𝑿𝑖 , Σ𝑿𝑖}𝑖=1
𝑛𝑘
}, comprised of a 

mixture weight 𝜋𝑿𝑖 , and the mean vector 𝝁𝑿𝑖  and covariance matrix Σ𝑿𝑖  for each multivariate 

Gaussian component, and the PDF is given by 

𝑝(𝒙 ∶ 𝜽𝑿) =∑𝜋𝑿𝑖𝒩(𝝁𝑿𝑖, Σ𝑿𝑖)

𝑛𝑘

𝑖=1

. 

1.3 Dynamic Bayesian Networks 

A Bayesian Network (BN) is an annotated directed acyclic graph (DAG) that encodes a joint probability 

/ density distribution (JPD) over a set of variables 𝑿 = {𝑋1, … , 𝑋𝑛} (Koller & Friedman, 2009) (Murphy, 

2012). Formally, a BN ℬ is defined as a pair ℬ = 〈𝒢, 𝜽〉. The component 𝒢 is a DAG whose vertices 

correspond to the random variables 𝑋1, … , 𝑋𝑛 and whose arcs define the (in)dependencies between 

these variables, in that each variable 𝑋𝑖 ∈ 𝑿 is independent of its non-descendants given its (possible 

empty) set of parents Pa(𝑋𝑖) in 𝒢. The component 𝜽 = {𝜽𝑋1|Pa(𝑋1), … , 𝜽𝑋𝑛|Pa(𝑋𝑛)} represents a set of 

parameters that quantify the probabilities / densities of the network. Given 𝒢 and 𝜽, a BN ℬ defines a 

unique JPD over 𝑿 as 

𝑝(𝑿 ∶ 𝜽) =∏𝑝(𝑋𝑖|Pa(𝑋𝑖) ∶ 𝜽𝑋𝑖|Pa(𝑋𝑖))

𝑛

𝑖=1

. 
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Dynamic Bayesian Networks (DBNs) extend BNs to model the stochastic evolution of 𝑿 over time. A 

DBN 𝒟 is defined as a pair 𝒟 = 〈ℬ1, ℬ→〉, where ℬ1 = 〈𝒢1, 𝜽1 = {𝜽𝑋11|Pa(𝑋11)
1 , … , 𝜽𝑋𝑛1|Pa(𝑋𝑛1)

1 }〉 is a BN 

that defines the JPD 𝑝(𝑿1 ∶ 𝜽1) for the first time slice, and, under the assumption of first-order Markov 

and stationary processes, ℬ→ = 〈𝒢→, 𝜽→ = {𝜽𝑋1𝑡|Pa(𝑋1𝑡)
→ , … , 𝜽𝑋𝑛𝑡 |Pa(𝑋𝑛𝑡)

→ }〉 is a so-called two time-slice 

Bayesian Network (2TBN), a conditional BN over two time slices, that defines the conditional 

probability / density distribution (CPD) 𝑝(𝑿𝑡|𝑿𝑡−1 ∶ 𝜽→) for all 𝑡 > 1 as 

𝑝(𝑿𝑡|𝑿𝑡−1 ∶ 𝜽→) =∏𝑝(𝑋𝑖
𝑡|Pa(𝑋𝑖

𝑡) ∶ 𝜽
𝑋𝑖
𝑡|Pa(𝑋𝑖

𝑡)
→ )

𝑛

𝑖=1

, 

where the parents of 𝑋𝑖
𝑡 may be comprised of both variables from time slice 𝑡 and 𝑡 − 1, Pa(𝑋𝑖

𝑡) ⊂

{𝑿𝑡, 𝑿𝑡−1}. The 2TBN is a conditional BN in that it only defines distributions over 𝑿𝑡, not 𝑿𝑡−1, and 

accordingly, 𝜽→ is only comprised of parameters for distributions over 𝑿𝑡. For any number of time 

slices 𝑇 ≥ 1, a DBN then defines the JPD 𝑝(𝑿1:𝑇 ∶  𝜽1, 𝜽→) over the time series 𝑿1, 𝑿2, … , 𝑿𝑇 as 

𝑝(𝑿1:𝑇 ∶  𝜽1, 𝜽→) = 𝑝(𝑿1 ∶ 𝜽1)∏𝑝(𝑿𝑡|𝑿𝑡−1 ∶ 𝜽→)

𝑇

𝑡=2

 

 
=∏𝑝(𝑋𝑖

1|Pa(𝑋𝑖
1) ∶ 𝜽

𝑋𝑖
1|Pa(𝑋𝑖

1)
1 )

𝑛

𝑖=1

∏∏𝑝(𝑋𝑖
𝑡|Pa(𝑋𝑖

𝑡) ∶ 𝜽
𝑋𝑖
𝑡|Pa(𝑋𝑖

𝑡)
→ )

𝑛

𝑖=1

𝑇

𝑡=2

. 

 

State-observation models 
A common sub-class of DBNs and the one we use in DySAM are state-observation models (Koller & 

Friedman, 2009), which incl. e.g., Hidden Markov Models and Kalman-Filters, where 𝑿 = {𝒁,𝒀}  is 

comprised of a set of unobservable state variables 𝒁 with Markov dynamics, that we like to reason 

about, and a set of observable variables 𝒀 that can be used to reason about 𝒁. In this case, the 2TBN 

𝑝(𝑿𝑡|𝑿𝑡−1) is commonly factorized as  

𝑝(𝑿𝑡|𝑿𝑡−1) = 𝑝(𝒁𝑡|𝒁𝑡−1)𝑝(𝒀𝑡|𝒁𝑡), 

where 𝑝(𝒁𝑡|𝒁𝑡−1) is called a dynamic model, as it models the temporal dynamics of the state, and 

𝑝(𝒀𝑡|𝒁𝑡)  is called an observation model, as it describes how the state generates observable 

measurements.  

1.4 Probabilistic inference 

If we have access to a state-observation model that defines a JPD 𝑝(𝒁1:𝑇 , 𝒀1:𝑇), we usually want to 

utilize it to infer probability queries over 𝒁 given some observed evidence over 𝒀. The most common 

inference task in DBNs include (Koller & Friedman, 2009): 

• Filtering: At any point in time 𝑡 ≥ 1, we want to infer the most informed distribution over the 

system state 𝒁𝑡 given all the evidence 𝒀1:𝑡 = 𝒚1:𝑡 obtained to far, 𝑝(𝒁𝑡|𝒚1:𝑡).  

• Prediction: At any point in time 𝑡 ≥ 1, given the available evidence 𝒚1:𝑡, predict a distribution 

over state and/or observable variable 𝑿⊆ ⊆ 𝑿 over the next 𝑛 time-slices, 𝑝(𝑿⊆
𝑡+1:𝑡+𝑛|𝒚1:𝑡) 
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• Smoothing: At any point in time 𝑡 ≥ 1, infer the posterior distribution over the system state 

𝒁𝑡 given the evidence of some longer trajectory 𝒚1:𝑇, 𝑝(𝒁𝑡|𝒚1:𝑇). 

For the DySAM system, we require a solution for filtering, i.e., we’re interested in inferring 𝑝(𝒁𝑡|𝒚1:𝑡) 

at each time step 𝑡. A straightforward solution is the standard recursively defined filtering algorithm 

(Koller & Friedman, 2009), which allows us to infer 𝑝(𝒁𝑡+1|𝒚1:𝑡+1)  from a previously inferred 

𝑝(𝒁𝑡|𝒚1:𝑡) and the new evidence 𝒚𝑡+1, using constant memory and computational effort. For the first 

time slice 𝑡 = 1, we can infer 𝑝(𝒁1|𝒚1) as  

𝑝(𝒁1|𝒚1) =
𝑝(𝒁1, 𝒚1)

𝑝(𝒚1)
∝ 𝑝(𝒁1)𝑝(𝒚1|𝒁1). 

Given 𝑝(𝒁𝑡|𝒚1:𝑡), we can infer 𝑝(𝒁𝑡+1|𝒚1:𝑡+1) as 

𝑝(𝒁𝑡+1|𝒚1:𝑡+1) =
1

𝑝(𝒚𝑡+1|𝒚1:𝑡)
∑ 𝑝(𝒛𝑡, 𝒁𝑡+1, 𝒚𝑡+1|𝒚1:𝑡)

𝒛𝑡∈Val(𝒁)

 

 
=

1

𝑝(𝒚𝑡+1|𝒚1:𝑡)
∑ 𝑝(𝒛𝑡|𝒚1:𝑡)𝑝(𝒁𝑡+1|𝒛𝑡, 𝒚1:𝑡)𝑝(𝒚𝑡+1|𝒛𝑡, 𝒁𝑡+1, 𝒚1:𝑡).

𝒛𝑡∈Val(𝒁)

 

 

Here, 
1

𝑝(𝒚𝑡+1|𝒚1:𝑡)
 is a normalization factor that ensures that ∑ 𝑝(𝒁𝑡+1|𝒚1:𝑡+1)𝒛𝑡+1∈Val(𝒁) = 1 . 

Furthermore, given the overall assumption of a state-observation model (e.g., the Markov 

assumption), we have that 𝑝(𝒁𝑡+1|𝒁𝑡, 𝒀1:𝑡) = 𝑝(𝒁𝑡+1|𝒁𝑡)  and 𝑝(𝒚𝑡+1|𝒛𝑡, 𝒁𝑡+1, 𝒚1:𝑡) =

𝑝(𝒚𝑡+1|𝒁𝑡+1), such that  

𝑝(𝒁𝑡+1|𝒚1:𝑡+1) ∝ 𝑝(𝒚𝑡+1|𝒁𝑡+1) ∑ 𝑝(𝒛𝑡|𝒚1:𝑡)𝑝(𝒁𝑡+1|𝒛𝑡)

𝒛𝑡∈Val(𝒁)

. 

1.5 Bayesian parameter estimation 

Distributions and DBNs (which are composed of distributions) require specific parameters to be fully 

specified. Ideally, we want to be able to estimate these parameters from prior knowledge and/or data, 

if available. In DySAM, we rely on Bayesian parameter estimation, which provides a common 

framework for both use cases. 

In the following, let 𝜽 denote some set of parameters for some arbitrary distribution 𝑝(⋅ ∶ 𝜽) and let 

𝒟 denote some dataset, consisting of 𝑛 training samples that can be used to estimate 𝜽. In Bayesian 

parameter estimation, we treat the parameters 𝜽 as random variables and use probabilistic inference 

to update our beliefs given the data 𝒟, i.e., we want to infer 𝑝(𝜽|𝒟). Using the Bayes rule, we have 

that  

𝑝(𝜽|𝒟) ∝ 𝑝(𝜽)𝑝(𝒟|𝜽). 

Here, 𝑝(𝜽) is called the prior distribution over the parameters, to be used to incorporate any prior 

knowledge we may have available, 𝑝(𝒟|𝜽) is the likelihood of the data given the parameters, and 

𝑝(𝜽|𝒟) is called the posterior distribution over the parameters, given the data. Bayesian parameter 
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estimation allows for incremental parameter estimation, in that given 𝑝(𝜽|𝒟) and a new dataset 𝒟′, 

we can infer an updated posterior 

𝑝(𝜽|𝒟,𝒟′) ∝ 𝑝(𝜽|𝒟)𝑝(𝒟′|𝜽,𝒟) = 𝑝(𝜽|𝒟)𝑝(𝒟′|𝜽), 

using 𝑝(𝜽|𝒟) as a new prior. 

For Bayesian parameter estimation to be computationally efficient, we require the parametric form of 

the distribution to be conjugate, meaning that if 𝑝(𝜽) is of a specific parametric form, the posterior 

distribution 𝑝(𝜽|𝒟) will be of the same parametric form. Fortunately, there are conjugate priors 

available for all distributions considered in DySAM. E.g., a conjugate prior for categorical distributions 

of the form 𝑝(𝐴 ∶  𝜽𝐴) = Cat(𝐴 ∶ 𝜽𝐴), Val(𝐴) = {𝑎1, … , 𝑎𝑛𝐴}, 𝜽𝐴 = {𝜃𝑎1 , … , 𝜃𝑎𝑛𝐴
}  is the Dirichlet 

distribution 

𝑝(𝜽𝐴 ∶ 𝜶) = Dir(𝜽𝐴 ∶  𝜶), 

itself governed by a set of (hyper-)parameters  𝜶 = {𝛼1, … , 𝛼𝑛}. With the Dirichlet distribution being 

a conjugate prior for the categorical distribution, the posterior distribution 𝑝(𝜽𝐴|𝓓 ∶ 𝜶
′) is itself a 

Dirichlet distribution with updated (hyper-)parameters 𝜶′ = {𝛼1
′ , … , 𝛼𝑛

′ }, 

𝑝(𝜽𝐴|𝓓 ∶ 𝜶
′) = Dir(𝜽𝐴 ∶  𝜶

′). 

Bayesian parameter estimation is completed with the inference of the posterior distribution 𝑝(𝜽|𝒟), 

capturing all available knowledge about the parameters given the data. There are several method to 

utilize such a distribution for inference. The most Bayesian approach would to integrate our 

uncertainty concerning the parameters into the inference process itself. E.g., given an arbitrary 

distribution 𝑝(⋅ ∶ 𝜽)  parameterized by 𝜽  and a posterior distribution 𝑝(𝜽|𝒟)  over the parameters 

given the data, we can integrate over all possible parameters according to our posterior beliefs to 

obtain 

𝑝(⋅ ∶ 𝒟) = ∫ 𝑝(⋅ ∶ 𝜽)𝑝(𝜽|𝒟)𝑑𝜽. 

Here, 𝑝(⋅ ∶ 𝒟) is known as the posterior predictive, representing our best guess about ⋅ after having 

seen the data 𝒟 . There are however some potential disadvantages discouraging the use of the 

posterior predictive. A computationally viable utilization of the posterior predictive requires the 

integral to be solvable in closed form, which depends on the parametric form of 𝑝(⋅ ∶ 𝒟) and 𝑝(𝜽|𝒟). 

More importantly however, we may not solely be interested in inferring 𝑝(⋅ ∶ 𝒟) but may also be 

interested in the parameters 𝜽 for knowledge discovery.  

An alternative for utilizing the posterior distribution and the one we use for DySAM is to select a single 

point estimate 𝜽̂ = 𝑓(𝑝(𝜽|𝒟)) from the posterior distribution and use it for inference, sometimes 

called a plug-in approximation (Murphy, 2012). The most common point estimates are the mean and 

the mode of the posterior distribution. Within DySAM, we will use the mode of the posterior 

distribution as plug-in approximation parameters, which is identical to the maximum a posteriori 

(MAP) estimate,  

𝜽̂MAP = argmax
𝛉
𝑝(𝜽)𝑝(𝒟|𝜽). 

In contrast, the maximum likelihood estimate (MLE) would be given by  
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𝜽̂MLE = argmax
𝛉
𝑝(𝒟|𝜽). 

However, although we only need a single point estimate 𝜽̂ for inference, it is always preferable to have 

access to the posterior 𝑝(𝜽|𝒟), e.g., to obtain confidence measures about our parameters, perform 

incremental parameter estimation, etc. 

Example: Bayesian parameter estimation for (multivariate) Gaussians 

To provide an in-depth example for Bayesian parameter estimation, we choose the case of 

(multivariate) Gaussians as provided by (Murphy, 2012). As a reminder, a Gaussian distribution over 

𝑿 = {𝑋1, … , 𝑋𝑛𝑿}, is parameterized by a set of parameters 𝜽𝑿 = {𝝁𝑿, Σ𝑿}, comprised of a mean vector 

𝝁𝑿 = 𝔼[𝑿] and a 𝑛𝑿 × 𝑛𝑿  covariance matrix Σ𝑿 = cov[𝑿]. In the univariate case, the parameters 

reduce to the mean 𝜇𝑋  and variance 𝜎𝑋
2 , 𝜽𝑋 = {𝜇𝑋, 𝜎𝑋

2}. To simplify the notion, we will drop the 

suffices 𝑿 and 𝑋 for the remainder of the example. 

Prior distribution 
Bayesian parameter estimation treats the parameters as random variables, and therefore these 

parameters themselves have a distribution. For the case of (multivariate) Gaussian distributions, it is 

common to use the normal inverse Wishart distribution (NIW) as a distribution over the parameters 

𝜽 = {𝝁, Σ}, defined as: 

𝑝(𝝁, Σ) = 𝑝(𝝁|Σ)𝑝(Σ) = 𝒩 (𝝁 ∶  𝐦0,
1

𝑘0
Σ) ×  IW(Σ ∶ S0, 𝑣0) ≜ NIW(𝝁, Σ ∶  𝐦0, 𝑘0, S0, 𝑣0). 

The NIW distribution itself is parametrized by a set of four parameters {𝐦0, 𝑘0, S0, 𝑣0}, referred to as 

hyperparameters to distinguish them from the parameters 𝜽 = {𝝁, Σ}  of the Gaussian. The 

hyperparameters can be interpreted as follows (Murphy, 2012): 𝐦0 is the prior mean vector for 𝝁, 

and 𝑘0 is the strength of this prior; S0 is a scatter matrix that is proportional to the prior mean for Σ, 

and 𝑣0 is the strength of this prior. 

To provide some additional insight into a (prior) NIW distribution, Figure 81 shows the density plot for 

an exemplary NIW distribution NIW(𝜇, 𝜎2 ∶ 𝑚0 = 0, 𝑘0 = 1, 𝑆0 = 1, 𝑣0 = 1)5  over the 

parameters 𝜽 = {𝜇, 𝜎2} of an univariate Gaussian, 𝑝(𝑋 ∶ 𝜇, 𝜎2). The solid red lines cross at the mode 

of the distribution 𝑝(𝜇̂Mode, 𝜎̂Mode
2 )6 and indicate 𝑝(𝜇̂Mode, 𝜎

2) and 𝑝(𝜇, 𝜎̂Mode
2 ). Although the mode is 

the most likely point estimate for the parameters, the distribution assigns high densities for a variety 

of point estimates, reflecting our prior uncertainty over which parameters to choose. The black 

projections show the marginal distributions 𝑝(𝜎2) and 𝑝(𝜇). The marginal 𝑝(𝜎2) is an inverse Wishart 

distribution, 𝑝(𝜎2) = IW(𝜎2 ∶  𝑆0, 𝑣0)7 . As apparent, the marginal has a slightly different mode 

(dotted black line) than the joint distribution (dotted red line). Due to the dependency of 𝜇 on 𝜎2, the 

 
5 In the univariate case, the vector 𝐦 and matrix S are reduced to scalars. 
6 The mode of the distribution would represent the MAP estimate of the parameters. 
7 The univariate inverse Wishart reduces to an inverse Gamma distribution. 
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marginal 𝑝(𝜇) is no Gaussian, but a Student T distribution8, 𝑝(𝜇) = 𝒯 (𝜇 ∶  𝑚,
𝑆

𝑘0𝑣0
, 𝑣0), however with 

the same mode as the joint. 

 

Figure 81: Example visualization of a (univariate) prior distribution 𝑝(𝜇, 𝜎2) = NIW(𝜇, 𝜎2 ∶ 𝑚0 = 0, 𝑘0 = 1, 𝑆0 = 1, 𝑣0 = 1) 
over the parameters of a univariate Gaussian. 

Posterior distribution 
The choice of a NIW distribution for 𝜽 is important in that the NIW distribution is conjugate to the 

Gaussian distribution, meaning that if we specify the prior distribution 𝑝(𝝁, Σ) to be a NIW distribution, 

the posterior distribution 

𝑝(𝝁, Σ|𝒟) ∝ 𝑝(𝒟|𝝁, Σ) 𝑝(𝝁, Σ) 

will also be a NIW distribution. More specifically, 𝑝(𝝁, Σ|𝒟)  is a NIW distribution with updated 

hyperparameters {𝐦𝑛, 𝑘𝑛, S𝑛, 𝑣𝑛}: 

𝑝(𝝁, Σ|𝒟) = NIW(𝝁, Σ ∶ 𝐦𝑛, 𝑘𝑛, S𝑛, 𝑣𝑛). 

Fortunately, there is a closed form solution to define the posterior hyperparameters {𝐦𝑛, 𝑘𝑛, S𝑛, 𝑣𝑛} 

of this posterior distribution, using the prior hyperparameters {𝐦0, 𝑘0, S0, 𝑣0} and a set of sufficient 

statistics {𝐱, S𝐱} to be derived from the dataset 𝒟 = (𝐱1, … , 𝐱𝑛), where 𝐱 denotes the empirical mean, 

𝐱 =  
1

𝑛
∑𝐱𝑖
𝑛

𝑖=1

, 

and S𝐱 denotes the empirical scatter matrix centered on 𝐱, 

 
8 The Student T distribution can be seen as an infinite mixture of Gaussians with different variances, 𝑝(𝜇𝑋) =

∫𝒩 (𝜇𝑋|𝑚,
1

𝑘
𝜎𝑋
2) ⋅ IW(𝜎𝑋

2 |𝑆, 𝑣) d𝜎 = 𝒯 (𝜇𝑋|𝑚,
𝑆

𝑘(𝑣−Dim+1)
, 𝑣 − Dim  1). 
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S𝐱 = ∑(𝐱𝑖
𝑛

𝑖=1

− 𝐱)(𝐱𝑖 − 𝐱)𝑇 .  

Given the prior hyperparameters {𝐦0, 𝑘0, S0, 𝑣0} and sufficient statistics {𝐱, S𝐱}, we can calculate the 

hyperparameters of the posterior distribution 𝑝(𝝁, Σ|𝒟) = NIW(𝝁, Σ ∶ 𝐦𝑛 , 𝑘𝑛, S𝑛, 𝑣𝑛 )  using the 

following closed-form solution (Murphy, 2012): 

𝐦𝑛 = 
𝑘0

𝑘0  𝑛
𝐦0  

𝑛

𝑘0  𝑛
𝐱, 

𝑘𝑛 = 𝑘0  𝑛, 

𝑣𝑛 = 𝑣0  𝑛, 

S𝑛 = S0  S𝐱   
𝑘0𝑛

𝑘0  𝑛
(𝐱 −𝐦0)(𝐱 −𝐦0)

𝑇 . 

To illustrate the difference between the prior and a hypothetical posterior distribution, Figure 82 

shows the density plot of an exemplary posterior NIW distribution 𝑝(𝜇, 𝜎2|𝒟) = NIW(𝜇, 𝜎2 ∶ 𝑚𝑛 =

1, 𝑘𝑛 = 100, S𝑛 = 50, 𝑣𝑛 = 100) updated (using some hypothetical dataset 𝒟 of size 𝑛 = 99) from 

the prior NIW distribution 𝑝(𝜇, 𝜎2) = NIW(𝜇, 𝜎2 ∶ 𝑚0 = 0, 𝑘0 = 1, S0 = 1, 𝑣0 = 1) shown in Figure 

81. Compared with the somehow vague prior distribution, the posterior distribution focusses most of 

the density mass on the mode, which consequently dominates all other point estimates. 

 

Figure 82: Example visualization of a (univariate) posterior distribution 𝑝(𝜇, 𝜎2|𝒟) = NIW(𝜇, 𝜎2 ∶ 𝑚𝑛 = 1, 𝑘𝑛 = 100, 𝑆𝑛 =
50, 𝑣𝑛 = 100) over the parameters of a univariate Gaussian. 

Point parameter estimates 
Bayesian parameter estimation is completed with the inference of the posterior distribution over the 

parameters given the data, 𝑝(𝝁, Σ|𝒟). There are several method to utilize such a distribution for 

inference. The common approach is to select a single point estimate from the posterior distribution, 

e.g., the mean or the mode. The mode of the posterior distribution is also known as the Maximum a 

posteriori (MAP) parameter estimate.  



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

124 
 

In the case of a multivariate Gaussian distribution with NIW posterior distribution,  

𝑝(𝝁, Σ|𝒟) = NIW(𝝁, Σ ∶ 𝐦𝑛, 𝑘𝑛, S𝑛, 𝑣𝑛), 

the MAP parameters are given by the mode of the distribution, defined as: 

𝜽𝑿 = {𝝁̂MAP, Σ̂MAP} = {𝐦𝑛,
S𝑛

𝑣𝑛  𝑛𝑿  2
}. 

In the absence of data, the prior (MAP) parameters would be simply given by the mode of the prior 

distribution: 

{𝝁̂Prior, Σ̂Prior} = {𝐦0,
S0

𝑣0  𝑛𝑿  2
}. 

We note that a more “Bayesian” approach would be to use the not decide on any singular parameter 

point estimate but instead to use the posterior predictive distribution: 

𝑝(𝑿|𝒟) = ∫ 𝑝(𝑿|𝜽𝑿)𝑝(𝜽|𝒟)𝑑𝜽. 

Given sufficient amount of data, the posterior predictive will rapidly approach the MAP estimate, 

which we use for DySAM in favor of the posterior predictive. 

Bayesian parameter estimation of GMMs 

Let 𝑿 = {𝑋1, … , 𝑋𝑛𝑿} be a set of continuous variables and 𝒟 = {𝒙𝑖}
𝑖=1

𝑛
 be a dataset to be used to 

estimate the parameters 𝜽𝑿 of a GMM comprised of 𝑛𝑘 Gaussian components, 

𝑝(𝒙 ∶ 𝜽𝑿) =∑𝜋𝑿𝑖𝒩(𝝁𝑿𝑖, Σ𝑿𝑖)

𝑛𝑘

𝑖=1

, 

i.e., we want to perform Bayesian parameter estimation to infer 𝑝(𝜽𝑿 | 𝒟). Interpreting 𝑝(𝒙 ∶ 𝜽𝑿) as 

a generative model for 𝒟, we can think each sample 𝒙𝑖 to be generated by one of the 𝑛𝑘 Gaussian 

components. Formally, we can encode the association of a sample 𝒙𝑖  with one of the mixture 

components by using an assignment to a latent variable 𝑍𝑖, Val(𝑍𝑖) = {𝑧1
𝑖 , … , 𝑧𝑛𝑘

𝑖 }, such that 𝑍𝑖 = 𝑧𝑗
𝑖 

if 𝒙𝑖 is generated by the 𝑗-th mixture components. Now consider a complete dataset 𝒟′ = {𝒙𝑖, 𝑧𝑖}
𝑖=1

𝑛
 

that provides both the samples and their association with one of the mixture components. Given 𝒟′, 

the posterior 𝑝(𝜽𝑿 | 𝒟
′) would factorize into a product of independent factors that could be inferred 

independently,  

𝑝(𝜽𝑿 | 𝒟
′) = 𝑝(𝝅𝑿 | 𝒟

′)∏𝑝(𝝁𝑿𝑖, Σ𝑿𝑖  | 𝒟
′)

𝑛𝑘

𝑖=1

, 

where 𝑝(𝝅𝑿 | 𝒟
′) corresponds to Bayesian parameter estimation for categorical distributions and 

𝑝(𝝁𝑿𝑖, Σ𝑿𝑖  | 𝒟
′)  corresponds to Bayesian parameter estimation for multivariate Gaussians. 

Unfortunately, we do not have access to the complete dataset 𝒟′ but only to the incomplete dataset 

𝒟. We can think of the missing annotations 𝑧1:𝑛 as the unknown assignments of a set of additional 

hidden variables 𝑍1:𝑛, that have to be estimated.  

As such, the true goal is to infer 𝑝(𝜽𝑿, 𝑍
1:n|𝒟). For this, we rely on a technique called variational Bayes 

Expectation Maximization (VBEM). The details of VBEM would go beyond the scope of this report, so 
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we refer to (Murphy, 2012) and (Bishop, 2006) for additional information and only provide the general 

idea. We will once again drop the subscript 𝑿 in the following. 

For VBEM of GMMs, we use a factored prior of the form 

𝑝(𝜽) = Dir(𝝅|𝛼0)∏𝒩(𝝁𝑖 ∶  𝐦0,
1

𝑘0
Σ)

𝑛𝑿

𝑖=1

Wi(Σ𝑖
−1|L0, 𝑣0), 

where Wi(⋅) denotes the (non-inverse) Wishart distribution, as an alternative to the NIW prior used 

for the multivariate Gaussian. Unfortunately, the exact posterior  

𝑝(𝜽|𝒟) = ∑ ∑ … ∑ 𝑝(𝜽, 𝑧1:𝑛|𝒟)

𝑧𝑛∈Val(𝑍𝑛)𝑧2∈Val(𝑍2)𝑧1∈Val(𝑍1)

  

is an highly complex mixture distribution that cannot be reasonably solved analytically. VBEM makes 

the problem tractable by applying a mean field approximating to 𝑝(𝜽, 𝑍1:𝑛|𝒟), resulting in: 

𝑝(𝜽, 𝑍1:𝑛|𝒟) ≈ 𝑞(𝝅|𝒟)∏𝑞(𝝁𝑖 , Σ𝑖
−1|𝒟)

𝑛𝑘

𝑖=1

∏𝑞(𝑍𝑖|𝒟)

𝑛

𝑖=1

. 

The idea is then to apply the Expectation-Maximization (EM)-algorithm by alternating between a 

(variational) Expectation (E)-step and a (variational) Maximization (M)-step. 

In essence, during the variational E-step, we will derive the posterior mean parameters from 

𝑞(𝝅|𝒟)∏ 𝑞(𝝁𝑖 , Σ𝑖
−1|𝒟)𝑛

𝑖=1  and use them to infer an updated estimate for the unknown labels, 𝑧1:𝑛. 

During the variational M-step, we then use these estimates to derive a new estimate for the 

parameters 𝜽. The process is repeated until convergence. 

An advantage of VBEM for GMMs is that it is sparsity-inducing: We can start with a maximum number 

of components we’re willing to accept and the VBEM will automatically remove unnecessary 

components. For the DySAM models, we use a maximum number of components of 𝑛𝑘 = 10. 

1.6 Generative and discriminative structure learning 

Let ℬ = 〈𝒢, 𝜽〉 be a BN over a set of 𝑛 variables 𝑿 = {𝑋1, … , 𝑋𝑛} and let 𝒟 = {𝒙𝑖}
𝑖=1

𝑚
 denote a set of 

𝑚 complete training samples (i.e. no missing values). Just as parameter estimation can be used to 

estimate the parameters 𝜽 of a BN from data, the goal of structure learning is to estimate a suitable 

graph structure 𝒢 from data. As the space of possible graph structures 𝓖 grows super-exponentially 

with the number of variables 𝑛, it is common to follow a local score and search paradigm, where a 

local heuristic search in the space of possible graph structures 𝓖  is guided by a scoring function 

Score(𝒢 ∶ 𝒟) that evaluates the degree of fitness between the structure 𝒢 and training data 𝒟 (Koller, 

Murphy). From a Bayesian perspective, the most natural scoring criterion is the so-called Bayesian 

score (Koller), the probability of a structure 𝒢 given the available data 𝒟: 

𝑝(𝒢|𝒟) =
𝑝(𝒢,𝒟)

𝑝(𝒟)
∝ 𝑝(𝒢)𝑝(𝒟|𝒢). 
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Here, 𝑝(𝒢)  is the prior probability for 𝒢 , usually chosen to be non-informative, 𝑝(𝒢) ∝ 1 , and 

therefore ignored, while 𝑝(𝒟|𝒢) is the marginal likelihood of the data given the graph structure, as it 

involves an integration over all possible parameters 𝜽:  

𝑝(𝒟|𝒢) = ∫𝑝(𝒟|𝜽, 𝒢)𝑝(𝜽|𝒢) 𝑑𝜽,  

where the term 𝑝(𝜽|𝒢) is the prior over the parameters given the graph structure and 𝑝(𝒟|𝜽, 𝒢) is the 

likelihood of the data given the parameters and graph structure: 

𝑝(𝒟|𝜽, 𝒢) =∏𝑝(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ∶ 𝜽)

𝑚

𝑖=1

, 

with 𝑝(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ∶ 𝜽) factorizing according to 𝒢. As, depending on the underlying model, no closed 

form solution for 𝑝(𝒟|𝒢) may be available, it is common to use an approximation known as the 

Bayesian Information Criterion (BIC) (Koller, Schwartz, Murphy). Let 𝜽̂ denote the MLE of the model 

parameters and ⌊𝜽̂⌋ denote the number of independent parameters of the model, the BIC score for a 

structure 𝒢 is commonly defined as 

BIC(𝒢 ∶ 𝒟) = log 𝑝(𝒟 ∶ 𝜽̂) −
⌊𝜽̂⌋

2
log𝑚, 

where log 𝑝(𝒟 ∶ 𝜽̂) = ∑ log 𝑝(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 ∶ 𝜽̂)𝑚
𝑖=1 , factorizing according to 𝒢, is the joint log-likelihood 

of the data, and 
⌊𝜽̂⌋

2
log𝑚 is a penalty term that grows with the complexity of the model. Structure 

learning with the BIC then equates to finding a structure 𝒢 that maximizes the joint log-likelihood while 

minimizing the number of independent parameters. 

Structure learning aimed at maximizing the joint (log-)likelihood is commonly referred to as generative 

training (Koller, Murphy). Generative training has many advantages, most notably the fact that the 

joint (log-)likelihood is decomposable into independently maximizable factors, which dramatically 

reduces the computational overhead of evaluating different graph structure (Koller). However, for 

models indicated for specific classification purpose, as in DySAM, generative training can lead to sub-

optimal performance, since it aims at finding an optimal structure over all variables instead of trying 

to find a structure that allows for optimal classification (Pernkopf & Bilmes, 2005). 

An alternative reported to yield better results for structure learning of models with a dedicated 

purpose is discriminative training, which aims at finding a structure and/or parameters that maximize 

a conditional (log-)likelihood corresponding to the intended utilization of the model (Koller, Murphy, 

Pernkopf). E.g., assume that the BN ℬ shall be utilized to infer 𝑝(𝑋1|𝑥2, … , 𝑥𝑛), i.e., the probability 

distribution over 𝑋1  given the evidence over all other variables in the network. In discriminative 

training, we would choose a scoring criterion that maximizes the conditional log-likelihood 

∑ log𝑝(𝑥1
𝑖 |𝑥2

𝑖 , … , 𝑥𝑛
𝑖 )𝑚

𝑖=1  instead of the joint log-likelihood ∑ log 𝑝(𝑥1
𝑖 , … , 𝑥𝑛

𝑖 )𝑚
𝑖=1 . Replacing the joint 

log-likelihood in the BIC results in a discriminative variant of the BIC (Guo) (Natarajan, Wong, & 

Tadepalli, 2006), we refer to as the discriminative BIC (DBIC). For the current example, the DBIC would 

be given by 
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DBIC(𝒢 ∶ 𝒟) =∑log𝑝(𝑥1
𝑖 |𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ∶ 𝜽̂)

𝑚

𝑖=1

−
⌊𝜽̂⌋

2
log𝑚. 

In addition to a score to assess the goodness of fit between a graph structure 𝒢 and the training data 

𝒟, structure learning requires a search procedure to traverse the search space of all possible graph 

structures 𝓖. A search procedure is a procedure that, starting from one graph structure, explores the 

search space in attempt to find a high-scoring graph structure. Given a “current” graph structure, the 

search procedure derives a set of graph structures that are similar or “neighbors” to the current one. 

These structures are generated by a set of search operators, each of which takes a structure and makes 

a small modification to it. The search procedure selects one of these neighbors and makes it the current 

structure. As such, the search procedure can be thought of as moving around in the search space by 

taking small steps. We can visualize the search space as a directed (but not necessarily acyclic graph), 

whose nodes are the potential graph structures and whose edges are the search operators that the 

search procedure can perform to move between the different graph structures (c.f. Figure 83).  

 

Figure 83: Exemplary visualization of the currently explored search space with elliptical nodes representing graph structures 
and edges representing graph manipulations. The number indicate the ID of the candidate graph structure, whose scores are 
color-coded (white = worse score, green = best score). To avoid clutter, rectangular nodes summarize “dead end” solutions 
that could not improve the score and have not been explored further. 

A crucial design choice that has large impact on the success of the heuristic search is the 

interconnectivity of the search space: “If each state has few neighbours, then the search procedure 

has to consider only a few options at each point of the search. Thus, it can afford to evaluate each of 

these options. However, this comes at a price. Paths from the initial solution to a good one might be 

long and complex. On the other hand, if each state has many neighbours, we may be able to move 

quickly from the initial state to a good state, but it may be difficult to determine which step to take at 

each point in the search.” (Koller & Friedman, 2009, p. 812). Koller and Friedman (2009) propose to 

define the connectivity of the search space in terms of atomic edge additions, deletions, and reversals, 

such that the neighborhood of a graph structure is given by the set of structures in which we changed 

exactly one edge, either by adding one, deleting one, or reversing the orientation of one. This is a very 

natural set of search operators for generative structure learning, where each (valid) edge manipulation 

results in a usually new factorization of 𝑝(𝑋1, … , 𝑋𝑛), with an usually new score.  

In contrast, for discriminative structure learning of BNs, we only need to consider edge manipulations 

that result in changes to the structure that actually affect the inference result, in the current example 
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𝑝(𝑋1|𝑥2… , 𝑥𝑛). This greatly reduces the interconnectivity of the search space, with the advantages 

and disadvantages mentioned above. For DySAM, we therefore currently use a slightly different set of 

search operators, better fitted for discriminative learning, in that we allow each search operator to be 

comprised of multiple edge additions and removals. The increase in search operators counterbalances 

the reduced interconnectivity allowing for a more meaningful traversal of the search space. 

The actual search procedure used for structure learning in DySAM is a beam-search variant of the 

common greedy hill-climbing procedure (Koller), in which we perform 𝐾  (called the beam width) 

searches simultaneously (the pseudo-code is provided in Table 23): We initialize the search with some 

initial solution 𝒢0. We then repeatedly consider all the solutions that are neighbors of the current 𝐾 

highest-scoring structures, compute their score, and select the 𝐾  structures with the highest 

improvement for the next iteration. The process is repeated until the score cannot be improved any 

longer and the highest-scoring of the current K highest-scoring structures is returned. 

Table 23: Pseudo-code implementation of the beam search learning procedure. 

Procedure Learn Structure via Beam Search   

𝒢0,     ni al graph structure 

Score,    Scoring func on 

𝒟,    Fully observed dataset 

𝐾    Beam width 

  

1: 𝓖Beam ← {𝒢0}     se the ini al graph structure to ini alize the beam set 

2: 𝒢best ← 𝒢0     ni alize the best graph structure with 𝒢0 

3: improved ← 𝑡𝑟𝑢𝑒 

 : while improved  {    Repeat the learning process un l the score can’t be improved any longer 

 :   𝓖hyp ← 𝓖Beam     ni alize the set of hypothe cal graph structures with the beam set 

6:   for each 𝒢 ∈ 𝓖Beam do {    Go through all structures in the beam set 

7:     𝓖hyp ← 𝓖hyp ∪ neighbours(𝒢)    Derive a set of adjacent graph structures of 𝒢 in the search 

space 

8:   } 

9:   𝓖Beam ← K-Best(Score, 𝓖ℎ𝑦𝑝, 𝐾, 𝒟)    Score all graph structures in 𝑮ℎ𝑦𝑝 on 𝐷 and return the 𝐾 

individual structures with the highest scores 

10:   if ∃𝒢 ∈ 𝓖Beam ∶  Score(𝒢: 𝒟) > Score(𝒢best ∶ 𝒟) {    Evaluate, whether any hypothe cal graph 

structure 𝒢 in the beam improves the score compared to the score of 𝒢best 

11:     𝒢best ← max
𝒢∈𝓖Beam

Score(𝒢 ∶ 𝒟)     se the graph with the highest score as the new best graph 

structure 

12:     improved ← 𝑡𝑟𝑢𝑒    We have an overall improvement of the score 

13:   } 

1 :   else { 

1 :     improved ← false    We have no overall improvement of the score 

16:   } 

17: } 

18: return 𝒢best    Return the best graph structure 
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Appendix 2 Model parameterization 

The following sections will provide the MAP parameters used for each distribution of each model. 

2.1 Parameters of the SAE Level 2 NDRT Model 

For any number of time slices 𝑇 ≥ 1, the SAE Level 2 NDRT model defines the JPD 

𝑝(𝑆1
1:𝑇 , 𝐵1:𝑇 , 𝑭Rel

1:𝑇 ∶ 𝜽)

= 𝑝(𝐵1 ∶ 𝜽𝐵1)∏𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1)

𝑇

𝑡=2

∏𝑝(𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡)

𝑇

𝑡=1

𝑝(𝑭Rel
𝑡 |𝐵𝑡 ∶ 𝜽), 

with 𝑝(𝑭Rel
𝑡  | 𝐵𝑡 ∶ 𝜽) factorizing as 

𝑝 (𝐹1
𝑡|𝐵𝑡 ∶ 𝜽𝐹1𝑡|𝐵𝑡)𝑝 (𝐹23

𝑡 |𝐵𝑡 ∶ 𝜽𝐹23𝑡 |𝐵𝑡) 

𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝐵𝑡). 

As such, the model is defined by six probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel = {𝐹1, 𝐹9, 𝐹12, 𝐹18, 𝐹21, 𝐹22, 𝐹23, 𝐹29, 𝐹32, 𝐹43, 𝐹48, 𝐹58} 

are provided in Table 24. 

Table 24: The set of relevant indicators for the SAE Level 2 NDRT model, 𝑭Rel =
{𝐹1, 𝐹9, 𝐹12, 𝐹18, 𝐹21, 𝐹22, 𝐹23, 𝐹29, 𝐹32, 𝐹43, 𝐹48, 𝐹58}. 

Symbol Name 

𝐹1 Pupil diameter valid 

𝐹9 Mean blink frequency 

𝐹12 Mean yaw angle of the head 

𝐹18 Mean gaze heading 

𝐹21 Mean gaze pitch 

𝐹22 Gaze pitch variability 

𝐹23  ands on steering wheel 

𝐹29 Mean monitoring frequency 

𝐹32 Mean saccade frequency 

𝐹43 Mean  me since last look at right mirror AO  

𝐹48 Mean  me since last look at rear mirror AO  

𝐹58 Mean  me since last look at infotainment AO  

 

Distribution 𝑝(𝐵1 ∶ 𝜽𝐵1) 
The distribution 𝑝(𝐵1 ∶ 𝜽𝐵1) is a categorical distribution  

𝑝(𝐵1 ∶ 𝜽𝐵1) = Cat(𝐵
1 ∶ 𝜽𝐵1) 

over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 𝑡 = 1, with MAP parameters  

𝜽𝐵1 = {𝜃𝑏01 , 𝜃𝑏11 , 𝜃𝑏21} = {0.324644, 0.324213, 0.351143}. 

Distribution 𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1) 
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The distribution 𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1) over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 

𝑡 > 1 is a collection of categorical distributions with a categorical distribution 

𝑝(𝐵𝑡|𝑏𝑡−1 ∶ 𝜽𝐵𝑡|𝑏𝑡−1) = Cat(𝐵
𝑡 ∶ 𝜽𝐵𝑡|𝑏𝑡−1) 

for each 𝑏𝑡−1 ∈ Val(𝐵) , parameterized with MAP parameters 𝜽𝐵𝑡|𝐵𝑡−1 =

{𝜽𝐵𝑡|𝑏0𝑡−1 , 𝜽𝐵𝑡|𝑏1𝑡−1 , 𝜽𝐵𝑡|𝑏2𝑡−1}, where 

𝜽𝐵𝑡|𝑏0𝑡−1 = {𝜃𝑏0𝑡|𝑏0𝑡−1 , 𝜃𝑏1𝑡|𝑏0𝑡−1 , 𝜃𝑏2𝑡|𝑏0𝑡−1} =
{0.999358, 0.000321, 0.000321 }, 

𝜽𝐵𝑡|𝑏1𝑡−1 = {𝜃𝑏0𝑡|𝑏1𝑡−1 , 𝜃𝑏1𝑡|𝑏1𝑡−1 , 𝜃𝑏2𝑡|𝑏1𝑡−1} =
{0.000321, 0.999357, 0.000321}, 

𝜽𝐵𝑡|𝑏2𝑡−1 = {𝜃𝑏0𝑡|𝑏2𝑡−1 , 𝜃𝑏1𝑡|𝑏2𝑡−1 , 𝜃𝑏2𝑡|𝑏2𝑡−1} =
{0.000297, 0.000297, 0.999406}. 

Distribution 𝑝(𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡) 

The distribution 𝑝 (𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡) over the binary variable 𝑆1, Val(𝑆1) = {𝑠10, 𝑠11} at time slice 𝑡 ≥ 1 

is a collection of categorical distributions with a categorical distribution 

𝑝 (𝑆1
𝑡 ∶ 𝑏𝑡 , 𝜽𝑆1𝑡|𝑏𝑡) = Cat (𝑆1

𝑡 ∶ 𝜽𝑆1𝑡|𝑏𝑡) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝑆1𝑡|𝐵𝑡 = {𝜽𝑆1𝑡|𝑏0𝑡 , 𝜽𝑆1𝑡|𝑏1𝑡 , 𝜽𝑆1𝑡|𝑏2𝑡}, where 

𝜽𝑆1𝑡|𝑏0𝑡 = {𝜃𝑠1𝑡0|𝑏0
𝑡 , 𝜃𝑠1𝑡1|𝑏0

𝑡} = {0.000492, 0.999508}, 

𝜽𝑆1𝑡|𝑏1𝑡 = {𝜃𝑠1𝑡0|𝑏1
𝑡 , 𝜃𝑠1𝑡1|𝑏1

𝑡} = {0.999507, 0.000493}, 

𝜽𝑆1𝑡|𝑏2𝑡 = {𝜃𝑠1𝑡0|𝑏2
𝑡 , 𝜃𝑠1𝑡1|𝑏2

𝑡} = {0.999545, 0.000455}. 

Distribution 𝑝(𝐹1
𝑡|𝐵𝑡, 𝜽𝐹1𝑡|𝐵𝑡) 

The distribution 𝑝 (𝐹1
𝑡|𝐵𝑡 , 𝜽𝐹1𝑡|𝐵𝑡) over the binary variable 𝐹1, Val(𝐹1) = {𝑓10, 𝑓11} at time slice 𝑡 ≥ 1 

is a collection of categorical distributions with a categorical distribution 

𝑝 (𝐹1
𝑡|𝑏𝑡 ∶ 𝜽𝐹1𝑡|𝑏𝑡) = Cat (𝐹1

𝑡 ∶ 𝜽𝐹1𝑡|𝑏𝑡) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝐹1𝑡|𝐵𝑡 = {𝜽𝐹1𝑡|𝑏0𝑡 , 𝜽𝐹1𝑡|𝑏1𝑡 , 𝜽𝐹1𝑡|𝑏2𝑡}, where 

𝜽𝐹1𝑡|𝑏0𝑡 = {𝜃𝑓1𝑡0|𝑏0
𝑡 , 𝜃𝑓1𝑡1|𝑏0

𝑡} = {0.002754, 0.997246}, 

𝜽𝐹1𝑡|𝑏1𝑡 = {𝜃𝑓1𝑡0|𝑏1
𝑡 , 𝜃𝑓1𝑡1|𝑏1

𝑡} = {0.004587, 0.995413}, 

𝜽𝐹1𝑡|𝑏2𝑡 = {𝜃𝑓1𝑡0|𝑏2
𝑡 , 𝜃𝑓1𝑡1|𝑏2

𝑡} = {0.032536, 0.967464}. 

Distribution 𝑝(𝐹23
𝑡 |𝐵𝑡 ∶ 𝜽𝐹1𝑡|𝐵𝑡) 
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The distribution 𝑝 (𝐹23
𝑡 |𝐵𝑡 ∶ 𝜽𝐹1𝑡|𝐵𝑡) over the binary variable 𝐹23, Val(𝐹23) = {𝑓230, 𝑓231} at time slice 

𝑡 ≥ 1 is a collection of categorical distributions with a categorical distribution 

𝑝 (𝐹23
𝑡 |𝑏𝑡 ∶ 𝜽𝐹23𝑡 |𝑏𝑡) = Cat (𝐹23

𝑡 ∶ 𝜽𝐹23𝑡 |𝑏𝑡) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝐹23𝑡 |𝐵𝑡 = {𝜽𝐹23𝑡 |𝑏0𝑡 , 𝜽𝐹23𝑡 |𝑏1𝑡 , 𝜽𝐹23𝑡 |𝑏2𝑡}, where 

𝜽𝐹23𝑡 |𝑏0𝑡 = {𝜃𝑓23𝑡 0|𝑏0
𝑡 , 𝜃𝑓23𝑡 1|𝑏0

𝑡} = {0.005203, 0.994797}, 

𝜽𝐹23𝑡 |𝑏1𝑡 = {𝜃𝑓23𝑡 0|𝑏1
𝑡 , 𝜃𝑓23𝑡 1|𝑏1

𝑡} = {0.058368, 0.941632}, 

𝜽𝐹23𝑡 |𝑏2𝑡 = {𝜃𝑓23𝑡 0|𝑏2
𝑡 , 𝜃𝑓23𝑡 1|𝑏2

𝑡} = {0.135976, 0.864024}. 

Distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝐵𝑡) 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝐵𝑡)  over a ten-

dimensional vector of continuous variables (𝐹9, 𝐹29, 𝐹32, 𝐹58, 𝐹48, 𝐹43, 𝐹12, 𝐹18, 𝐹21, 𝐹22) at time slice 

𝑡 ≥ 1 is a collection of multivariate Gaussian mixture distributions with a multivariate GMM  

𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝑏𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡𝑖𝒩(𝝁𝑏𝑡 𝑖, Σ𝑏𝑡 𝑖)

𝑛𝑏

𝑖=1

 

composed of 𝑛𝑏  components for each 𝑏𝑡 ∈ Val(𝐵) , parameterized with MAP parameters 

𝜽𝐹9𝑡,…,𝐹22𝑡 |𝐵𝑡 = {𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏0𝑡 , 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏1𝑡 , 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝑏0
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖

, 𝝁𝑏0𝑡𝑖
, Σ𝑏0𝑡 𝑖

}
𝑖=1

6
}) 

consists of six components, where  

𝜋𝑏0𝑡1
= 0.010657, 𝜋𝑏0𝑡2

= 0.075461, 𝜋𝑏0𝑡3
= 0.095207, 

𝜋𝑏0𝑡4
= 0.532933, 𝜋𝑏0𝑡5

= 0.284807, 𝜋𝑏0𝑡6
= 0.000935, 

𝝁𝑏0𝑡1
=

(

 
 
 
 
 
 
 

0.464910
0.452272
1.716468
88.416617
105.170067
212.806472
0.050879
−0.036855
−0.112307
0.148282 )

 
 
 
 
 
 
 

,𝝁𝑏0𝑡2
=

(

 
 
 
 
 
 
 

0.493630
0.588150
1.841275
80.715528
10.748530
521.325653
0.188972
0.196200
−0.139233
0.107972 )

 
 
 
 
 
 
 

,𝝁𝑏0𝑡3
=

(

 
 
 
 
 
 
 

0.665674
0.155297
1.646815
156.488420
50.457821
382.635128
0.105790
0.037464
−0.083028
0.058732 )

 
 
 
 
 
 
 

, 
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𝝁𝑏0𝑡4
=

(

 
 
 
 
 
 
 

0.407820
0.623915
1.411906
73.540547
6.228482
88.029871
0.062682
0.013080
−0.120141
0.107307 )

 
 
 
 
 
 
 

,𝝁𝑏0𝑡5
=

(

 
 
 
 
 
 
 

0.434232
0.343784
1.230431
35.664319
18.570101
381.476372
0.080316
−0.000810
−0.101096
0.084889 )

 
 
 
 
 
 
 

,𝝁𝑏0𝑡6
=

(

 
 
 
 
 
 
 

0.243788
13.348888
1.685575
17.725819
17.725819
65.831887
−0.095144
−0.177381
−0.211792
0.140121 )

 
 
 
 
 
 
 

, 

 Σ𝑏0𝑡1

=

[
 
 
 
 
 
 
 
 
 
0.101395 −0.030582 −0.030420 12.065302 12.874710 18.012518 −0.003221 0.001787 −0.003407 −0.012685
−0.030582 0.146514 0.102074 −21.332288 −24.888897 −42.851187 −0.007503 −0.031016 −0.008857 0.018785
−0.030420 0.102074 0.320866 −32.007662 −40.035101 −52.551519 −0.027915 −0.069619 −0.005712 0.019409
12.065302 −21.332288 −32.007662 12988.213871 10015.235072 15283.205922 0.936175 5.193772 1.774361 −7.367564
12.874710 −24.888897 −40.035101 10015.235072 15127.973878 16097.544722 2.423651 8.457445 1.427744 −8.062354
18.012518 −42.851187 −52.551519 15283.205922 16097.544722 40323.148654 0.719644 8.056554 4.684907 −12.551466
−0.003221 −0.007503 −0.027915 0.936175 2.423651 0.719644 0.019813 0.015350 0.000918 0.002001
0.001787 −0.031016 −0.069619 5.193772 8.457445 8.056554 0.015350 0.051533 0.001030 0.000167
−0.003407 −0.008857 −0.005712 1.774361 1.427744 4.68491 0.000918 0.001030 0.016176 0.002779
−0.012685 0.018785 0.019409 −7.367564 −8.062354 −12.551466 0.002001 0.000167 0.002779 0.013681 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏0𝑡2
=

[
 
 
 
 
 
 
 
 
 
0.07483 0.000843 0.026974 1.675446 −0.595647 4.973664 −0.011556 −0.027065 0.005905 0.003274
0.000843 0.093515 −0.003583 −2.815946 −1.225973 −16.242744 0.002215 0.008085 −0.009796 0.004741
0.026974 −0.003583 0.102362 −1.073699 −0.591993 2.264475 −0.015296 −0.026557 0.007235 −0.001781
1.675446 −2.815946 −1.073699 2675.06846 −18.630811 19.289762 −1.776246 −2.879728 0.352 0.120931
−0.595647 −1.225973 −0.591993 −18.630811 624.219828 278.653954 0.394386 0.618953 −0.092046 −0.11357
4.973664 −16.242744 2.264475 19.289762 278.653954 10760.37288 0.90811 −0.802583 2.948077 −1.216016
−0.011556 0.002215 −0.015296 −1.776246 0.394386 0.90811 0.018682 0.023655 −0.00493 −0.000252
−0.027065 0.008085 −0.026557 −2.879728 0.618953 −0.802583 0.023655 0.044954 −0.008893 −0.001363
0.005905 −0.009796 0.007235 0.352 −0.092046 2.94807 −0.00493 −0.008893 0.006098 −0.001025
0.003274 0.004741 −0.001781 0.120931 −0.11357 −1.216016 −0.000252 −0.001363 −0.001025 0.001733 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏0𝑡3

=

[
 
 
 
 
 
 
 
 
 
0.069074 −0.003071 0.065782 −2.995375 −0.592999 −6.581665 0.001541 −0.000289 0.001055 −0.001102
−0.003071 0.025238 0.016835 2.814376 −3.13268 1.201293 −0.0003 0.000152 0.000006 0.002174
0.065782 0.016835 0.229415 1.2853 −4.320678 −18.966361 0.002197 0.008692 0.000719 −0.000395
−2.995375 2.814376 1.2853 5790.685986 −1715.435199 −1963.042308 0.413263 −0.984919 0.462782 −0.105158
−0.592999 −3.13268 −4.320678 −1715.435199 2208.928506 1996.598122 −0.235655 −0.019688 −0.208172 −0.232314
−6.581665 1.201293 −18.966361 −1963.042308 1996.598122 20257.89338 −2.565929 −2.041014 −0.034683 −0.469695
0.001541 −0.0003 0.002197 0.413263 −0.235655 −2.565929 0.002402 0.00123 0.000082 0.000042
−0.000289 0.000152 0.008692 −0.984919 −0.019688 −2.041014 0.00123 0.008884 −0.000628 0.000133
0.001055 0.000006 0.000719 0.462782 −0.208172 −0.034683 0.000082 −0.000628 0.001744 −0.00078
−0.001102 0.002174 −0.000395 −0.105158 −0.232314 −0.469695 0.000042 0.000133 −0.00078 0.001761 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏0𝑡4
=

[
 
 
 
 
 
 
 
 
 
0.038707 0.019189 0.025302 0.335548 −0.225187 0.236951 0.002339 −0.000356 0.00054 0.001568
0.019189 0.066373 0.038793 −1.567437 −0.483736 −3.212564 0.002804 0.00155 −0.00284 0.003214
0.025302 0.038793 0.17853 −6.136782 −0.16404 −6.501844 0.004837 0.002272 −0.005964 0.004875
0.335548 −1.567437 −6.136782 4020.929878 24.419003 204.536914 −0.597608 0.306417 0.241617 −0.427123
−0.225187 −0.483736 −0.16404 24.419003 101.213713 18.143468 0.120999 0.193153 −0.051457 0.003621
0.236951 −3.212564 −6.501844 204.536914 18.143468 3999.009842 0.257917 0.237757 0.61827 −0.537067
0.002339 0.002804 0.004837 −0.597608 0.120999 0.257917 0.009235 0.009178 −0.001207 0.000861
−0.000356 0.00155 0.002272 0.306417 0.193153 0.237757 0.009178 0.015813 −0.002545 0.001095
0.00054 −0.00284 −0.005964 0.241617 −0.051457 0.61827 −0.001207 −0.002545 0.002208 −0.001221
0.001568 0.003214 0.004875 −0.427123 0.003621 −0.537067 0.000861 0.001095 −0.001221 0.001587 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏0𝑡5
=

[
 
 
 
 
 
 
 
 
 
0.058247 0.013987 0.07152 −1.009222 −1.231935 −11.654191 0.00051 −0.00089 0.000939 0.001094
0.013987 0.051407 0.045299 −2.345656 −2.546025 6.831527 −0.002709 −0.005278 −0.001337 0.00425
0.07152 0.045299 0.214784 −3.771325 −3.453472 1.376192 0.001601 −0.001786 0.000339 0.00489
−1.009222 −2.345656 −3.771325 776.743408 139.172258 −366.982381 0.148611 0.057755 0.223786 −0.327497
−1.231935 −2.546025 −3.453472 139.172258 488.939075 −50.18754 0.169093 0.410336 0.032671 −0.200399
−11.654191 6.831527 1.376192 −366.982381 −50.18754 42393.77187 0.398829 0.714668 −0.863061 1.098365
0.00051 −0.002709 0.001601 0.148611 0.169093 0.398829 0.003689 0.002184 0.000627 −0.000563
−0.00089 −0.005278 −0.001786 0.057755 0.410336 0.714668 0.002184 0.006576 −0.000619 −0.000256
0.000939 −0.001337 0.000339 0.223786 0.032671 −0.863061 0.000627 −0.000619 0.001708 −0.001129
0.001094 0.00425 0.00489 −0.327497 −0.200399 1.098365 −0.000563 −0.000256 −0.001129 0.002017 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏0𝑡6

=

[
 
 
 
 
 
 
 
 
 
0.785405 −1.863581 −0.005365 8.842449 7.606601 33.285154 0.003941 0.008045 −0.001791 −0.001906
−1.863581 63.539933 0.278321 −265.183084 −229.263417 −997.995293 −0.185079 −0.322426 0.034173 0.07184
−0.005365 0.278321 0.983374 −0.692613 −0.616743 −2.601981 −0.001531 −0.002118 −0.00021 0.000413
8.842449 −265.183084 −0.692613 40367.78293 1103.182698 4831.239417 0.523301 1.108202 −0.273644 −0.266247
7.606601 −229.263417 −0.616743 1103.182698 42852.48628 4152.7494 0.462049 0.967613 −0.231674 −0.231596
33.285154 −997.995293 −2.601981 4831.239417 4152.7494 156076.2918 1.967542 4.168712 −1.029957 −1.002499
0.003941 −0.185079 −0.001531 0.523301 0.462049 1.967542 0.119846 0.001325 0.0001 −0.00027
0.008045 −0.322426 −0.002118 1.108202 0.967613 4.168712 0.001325 0.170476 0.000026 −0.000434
−0.001791 0.034173 −0.00021 −0.273644 −0.231674 −1.029957 0.0001 0.000026 0.09991 −0.000004
−0.001906 0.07184 0.000413 −0.266247 −0.231596 −1.002499 −0.00027 −0.000434 −0.000004 0.017904 ]

 
 
 
 
 
 
 
 
 

. 
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The distribution  

𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝑏1
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖

, 𝝁𝑏1𝑡𝑖
, Σ𝑏1𝑡 𝑖

}
𝑖=1

9
}) 

consists of nine components, where  

𝜋𝑏1𝑡1
= 0.223168, 𝜋𝑏1𝑡2

= 0.029221, 𝜋𝑏1𝑡3
= 0.073630, 

𝜋𝑏1𝑡4
= 0.109578, 𝜋𝑏1𝑡5

= 0.209613, 𝜋𝑏1𝑡6
= 0.128705, 

𝜋𝑏1𝑡7
= 0.170325, 𝜋𝑏1𝑡8

= 0.019290, 𝜋𝑏1𝑡9
= 0.036471, 

𝝁𝑏1𝑡1
=

(

 
 
 
 
 
 
 

0.663347
0.061683
1.16527

196.552966
208.090248
235.573518
−0.003843
0.03015
−0.076019
0.039065 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡2
=

(

 
 
 
 
 
 
 

1.446787
0.681982
2.288055
13.363604
32.287283
358.398518
0.09489
0.013928
−0.185204
0.123967 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡3
=

(

 
 
 
 
 
 
 

1.087966
0.231743
1.843896
134.888543
133.047491
457.884303
0.09537
0.065131
−0.094216
0.09204 )

 
 
 
 
 
 
 

, 

𝝁𝑏1𝑡4
=

(

 
 
 
 
 
 
 

0.468387
0.500928
1.667181
39.488754
69.852672
489.481186
0.110748
0.070525
−0.157324
0.113811 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡5
=

(

 
 
 
 
 
 
 

0.72706
0.050834
0.867885
317.85026
129.35088
371.636113
0.064577
0.009258
−0.06785
0.037092 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡6
=

(

 
 
 
 
 
 
 

0.45828
0.133534
1.078625
92.659968
62.330735
590.276959
0.007412
0.055159
−0.080502
0.051522 )

 
 
 
 
 
 
 

, 

𝝁𝑏1𝑡7
=

(

 
 
 
 
 
 
 

0.787458
0.266171
1.723765
128.292341
19.77285
93.438727
0.046382
0.017164
−0.108915
0.082044 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡8
=

(

 
 
 
 
 
 
 

0.560234
0.158464
1.348824
90.325392
628.509886
644.262152
0.090483
0.077412
−0.100144
0.062364 )

 
 
 
 
 
 
 

,𝝁𝑏1𝑡9
=

(

 
 
 
 
 
 
 

0.55669
0.316724
1.593132
436.170891
56.057906
495.047958
0.029142
0.022736
−0.121456
0.085111 )

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡1
=

[
 
 
 
 
 
 
 
 
 
0.054632 −0.004805 0.066309 11.374726 11.131535 12.42698 −0.003868 −0.000437 0.000824 0.000078
−0.004805 0.007116 −0.003114 −2.141256 −1.824987 −2.548025 0.003781 0.000599 −0.000691 0.000704
0.066309 −0.003114 0.151171 23.382926 22.374701 25.29254 −0.005857 0.002336 −0.001044 0.001059
11.374726 −2.141256 23.382926 30154.68679 29185.84922 31571.36403 −7.749559 −0.604642 −1.074281 −0.464655
11.131535 −1.824987 22.374701 29185.84922 28742.31739 30806.19372 −7.05596 −0.633193 −1.047501 −0.409613
12.42698 −2.548025 25.29254 31571.36403 30806.19372 34805.56944 −9.906637 −1.014412 −1.181613 −0.784359
−0.003868 0.003781 −0.005857 −7.749559 −7.05596 −9.906637 0.012446 0.001505 −0.000262 0.001626
−0.000437 0.000599 0.002336 −0.604642 −0.633193 −1.014412 0.001505 0.001684 −0.000284 0.000338
0.000824 −0.000691 −0.001044 −1.074281 −1.047501 −1.181613 −0.000262 −0.000284 0.000856 −0.000197
0.000078 0.000704 0.001059 −0.464655 −0.409613 −0.784359 0.001626 0.000338 −0.000197 0.00068 ]

 
 
 
 
 
 
 
 
 

, 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

134 
 

Σ𝑏1𝑡2
=

[
 
 
 
 
 
 
 
 
 
0.696411 −0.040519 0.06684 −3.261698 −3.841105 −22.44343 −0.014446 −0.042677 0.002474 −0.001524
−0.040519 0.062345 0.027847 0.608008 −1.439974 −19.854787 −0.003043 −0.010934 0.002083 0.000157
0.06684 0.027847 0.160706 −0.592033 −0.44346 −5.038179 0.00003 −0.012665 0.006084 −0.003039
−3.261698 0.608008 −0.592033 1559.406205 31.611186 300.926184 0.145964 −0.026015 −0.044951 0.005046
−3.841105 −1.439974 −0.44346 31.611186 2103.621364 4129.795683 0.850817 1.984054 −0.17609 −0.015263
−22.44343 −19.854787 −5.038179 300.926184 4129.795683 62218.07413 16.074939 20.971692 −0.020195 −1.90134
−0.014446 −0.003043 0.00003 0.145964 0.850817 16.074939 0.013837 0.008864 −0.000008 −0.001513
−0.042677 −0.010934 −0.012665 −0.026015 1.984054 20.971692 0.008864 0.028355 −0.003046 0.000206
0.002474 0.002083 0.006084 −0.044951 −0.17609 −0.020195 −0.000008 −0.003046 0.005257 −0.000638
−0.001524 0.000157 −0.003039 0.005046 −0.015263 −1.90134 −0.001513 0.000206 −0.000638 0.001368 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡3

=

[
 
 
 
 
 
 
 
 
 
0.373379 −0.004707 0.193077 −27.125826 −45.026173 46.67971 −0.021025 −0.023641 0.029011 −0.004118
−0.004707 0.029606 −0.01512 4.093806 5.069115 −2.783874 0.002041 0.004693 −0.004378 0.00182
0.193077 −0.01512 0.231001 −19.615695 −33.147143 41.449103 −0.016747 −0.0205 0.022687 −0.004642
−27.125826 4.093806 −19.615695 5590.806747 6507.908577 −4684.679096 2.699086 3.812564 −3.52859 0.800613
−45.026173 5.069115 −33.147143 6507.908577 10774.1451 −7998.227739 4.074345 5.381831 −5.673047 1.31061
46.67971 −2.783874 41.449103 −4684.679096 −7998.227739 15793.44959 −2.862684 −4.156328 5.494859 −1.616469
−0.021025 0.002041 −0.016747 2.699086 4.074345 −2.862684 0.005608 0.003383 −0.002847 0.000445
−0.023641 0.004693 −0.0205 3.812564 5.381831 −4.156328 0.003383 0.007332 −0.003659 0.00085
0.029011 −0.004378 0.022687 −3.52859 −5.673047 5.494859 −0.002847 −0.003659 0.005474 −0.001061
−0.004118 0.00182 −0.004642 0.800613 1.31061 −1.616469 0.000445 0.00085 −0.001061 0.000951 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡4

=

[
 
 
 
 
 
 
 
 
 
0.036127 −0.002412 0.035215 −0.691473 2.313606 10.427043 0.000817 −0.00196 −0.000515 0.000509
−0.002412 0.027074 −0.002446 0.21471 −1.447622 −17.681614 −0.002057 −0.000098 −0.000363 0.000401
0.035215 −0.002446 0.226279 −7.395927 −5.941562 −17.827937 −0.006439 −0.019508 0.001612 −0.000486
−0.691473 0.21471 −7.395927 1476.844234 727.259425 −1050.429939 0.222899 1.26243 0.006808 −0.066471
2.313606 −1.447622 −5.941562 727.259425 2607.94643 3213.71474 0.558579 1.005641 0.028806 0.072397
10.427043 −17.681614 −17.827937 −1050.429939 3213.71474 69725.0709 6.477808 2.789972 −0.769522 0.540034
0.000817 −0.002057 −0.006439 0.222899 0.558579 6.477808 0.003575 0.002292 −0.000529 −0.000032
−0.00196 −0.000098 −0.019508 1.26243 1.005641 2.789972 0.002292 0.011228 −0.002042 0.000908
−0.000515 −0.000363 0.001612 0.006808 0.028806 −0.769522 −0.000529 −0.002042 0.002448 −0.000802
0.000509 0.000401 −0.000486 −0.066471 0.072397 0.540034 −0.000032 0.000908 −0.000802 0.001008 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡5

=

[
 
 
 
 
 
 
 
 
 
0.249082 0.002238 0.058105 4.798814 0.572099 0.848097 0.003706 −0.001687 0.003051 0.002406
0.002238 0.004332 0.005366 −0.304577 −1.571955 0.019541 0.000133 −0.000161 −0.00014 0.000271
0.058105 0.005366 0.083829 2.111065 −2.280324 −1.848045 −0.001241 0.001359 −0.000737 0.001487
4.798814 −0.304577 2.111065 26205.40566 −1642.570651 24631.93851 −2.414454 −0.805903 −0.384329 −0.302109
0.572099 −1.571955 −2.280324 −1642.570651 8793.2044 −3268.315483 −0.569421 0.773203 −0.076177 −0.163847
0.848097 0.019541 −1.848045 24631.93851 −3268.315483 27044.36484 −1.127679 −1.420953 −0.204031 −0.316876
0.003706 0.000133 −0.001241 −2.414454 −0.569421 −1.127679 0.002508 −0.000247 0.000322 0.000037
−0.001687 −0.000161 0.001359 −0.805903 0.773203 −1.420953 −0.000247 0.001678 −0.000242 0.000095
0.003051 −0.00014 −0.000737 −0.384329 −0.076177 −0.204031 0.000322 −0.000242 0.000755 −0.000072
0.002406 0.000271 0.001487 −0.302109 −0.163847 −0.316876 0.000037 0.000095 −0.000072 0.000358 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡6

=

[
 
 
 
 
 
 
 
 
 
0.043714 0.006665 0.063325 0.874534 −4.226873 −10.49096 0.005582 −0.002722 0.002737 0.002458
0.006665 0.011696 0.013633 0.051057 −2.677924 −3.246141 0.002247 −0.000927 −0.000134 0.001035
0.063325 0.013633 0.171703 2.66021 −5.722564 −13.546072 0.011647 −0.005199 0.00457 0.004586
0.874534 0.051057 2.66021 2603.819029 −435.002379 2379.266821 0.844026 −0.436978 −0.093078 0.052762
−4.226873 −2.677924 −5.722564 −435.002379 4810.714505 2174.313511 −2.369814 1.608755 −0.259936 −0.519166
−10.49096 −3.246141 −13.546072 2379.266821 2174.313511 15710.75077 −1.110439 1.491353 −1.255741 −1.184228
0.005582 0.002247 0.011647 0.844026 −2.369814 −1.110439 0.004551 −0.000265 0.00015 0.000858
−0.002722 −0.000927 −0.005199 −0.436978 1.608755 1.491353 −0.000265 0.004626 −0.00076 0.000129
0.002737 −0.000134 0.00457 −0.093078 −0.259936 −1.255741 0.00015 −0.00076 0.001518 −0.000123
0.002458 0.001035 0.004586 0.052762 −0.519166 −1.184228 0.000858 0.000129 −0.000123 0.00085 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡7
=

[
 
 
 
 
 
 
 
 
 
0.119197 0.012277 0.226702 −0.005214 −1.548405 −7.080485 −0.001672 −0.011838 −0.002817 0.003692
0.012277 0.022657 0.038929 −7.829902 −0.52217 −4.171293 −0.0005 −0.000981 −0.001442 0.001925
0.226702 0.038929 0.520798 −8.252749 −3.896937 −19.692779 −0.007973 −0.023786 −0.008056 0.010591
−0.005214 −7.829902 −8.252749 11846.86021 166.375999 4620.516846 0.322548 0.032754 0.992769 −1.000653
−1.548405 −0.52217 −3.896937 166.375999 526.487229 100.497083 0.284734 0.278766 0.023263 −0.043289
−7.080485 −4.171293 −19.692779 4620.516846 100.497083 6063.662441 0.369492 0.314248 0.615462 −0.777827
−0.001672 −0.0005 −0.007973 0.322548 0.284734 0.369492 0.005046 0.002844 −0.000216 0.000063
−0.011838 −0.000981 −0.023786 0.032754 0.278766 0.314248 0.002844 0.007181 −0.000631 0.000329
−0.002817 −0.001442 −0.008056 0.992769 0.023263 0.615462 −0.000216 −0.000631 0.001506 −0.000765
0.003692 0.001925 0.010591 −1.000653 −0.043289 −0.777827 0.000063 0.000329 −0.000765 0.001246 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏1𝑡8
=

[
 
 
 
 
 
 
 
 
 
0.039549 0.003297 0.007625 0.193597 −0.750314 −0.319725 0.000042 0.000225 −0.000095 0.000148
0.003297 0.030892 0.020008 1.49527 −0.925801 0.746772 0.000316 −0.000181 0.000121 0.000055
0.007625 0.020008 0.114819 4.032855 2.144406 2.718993 0.002273 0.000665 −0.000379 0.001309
0.193597 1.49527 4.032855 2695.398686 210.212331 759.302045 0.133824 0.084663 0.130186 −0.063927
−0.750314 −0.925801 2.144406 210.212331 9101.264523 2621.076838 1.484959 1.531855 0.871644 −0.37593
−0.319725 0.746772 2.718993 759.302045 2621.076838 9211.265641 0.827884 0.953995 0.672697 −0.344342
0.000042 0.000316 0.002273 0.133824 1.484959 0.827884 0.006768 0.000883 0.000002 0.000272
0.000225 −0.000181 0.000665 0.084663 1.531855 0.953995 0.000883 0.010011 −0.000036 0.000305
−0.000095 0.000121 −0.000379 0.130186 0.871644 0.672697 0.000002 −0.000036 0.005585 −0.000621
0.000148 0.000055 0.001309 −0.063927 −0.37593 −0.344342 0.000272 0.000305 −0.000621 0.001916 ]

 
 
 
 
 
 
 
 
 

, 
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Σ𝑏1𝑡9
=

[
 
 
 
 
 
 
 
 
 
0.070417 −0.007546 0.045241 8.999374 −2.640496 4.820088 0.003291 0.005093 0.00289 −0.002195
−0.007546 0.038942 0.000095 −8.125502 −2.323164 −3.987021 −0.003221 −0.006026 −0.003314 0.002788
0.045241 0.000095 0.166734 5.745456 −2.287217 −1.528077 −0.003033 −0.000535 0.000659 −0.001707
8.999374 −8.125502 5.745456 23156.56927 1861.50279 19670.22713 9.628247 12.841797 2.580321 −0.882839
−2.640496 −2.323164 −2.287217 1861.50279 2674.568029 2745.279062 1.004296 1.87681 −0.200758 −0.03283
4.820088 −3.987021 −1.528077 19670.22713 2745.279062 27032.7099 8.622141 11.140946 0.930869 0.081672
0.003291 −0.003221 −0.003033 9.628247 1.004296 8.622141 0.010005 0.007359 0.001094 −0.000513
0.005093 −0.006026 −0.000535 12.841797 1.87681 11.140946 0.007359 0.017081 0.00184 −0.000889
0.00289 −0.003314 0.000659 2.580321 −0.200758 0.930869 0.001094 0.00184 0.004587 −0.001162
−0.002195 0.002788 −0.001707 −0.882839 −0.03283 0.081672 −0.000513 −0.000889 −0.001162 0.00173 ]

 
 
 
 
 
 
 
 
 

. 

The distribution  

𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹32
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡 , 𝐹18

𝑡 , 𝐹21
𝑡 , 𝐹22

𝑡 |𝑏2
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹22𝑡 |𝑏2𝑡 = {{𝜋𝑏1𝑡 𝑖

, 𝝁𝑏1𝑡𝑖
, Σ𝑏1𝑡 𝑖

}
𝑖=1

8
}) 

consists of eight components, where  

𝜋𝑏2𝑡1
= 0.056343, 𝜋𝑏2𝑡2

= 0.000267, 𝜋𝑏2𝑡3
= 0.076837, 𝜋𝑏2𝑡4

= 0.148932, 

𝜋𝑏2𝑡5
= 0.123758, 𝜋𝑏2𝑡6

= 0.082786, 𝜋𝑏2𝑡7
= 0.099131, 𝜋𝑏2𝑡8

= 0.411947, 

𝝁𝑏2𝑡1
=

(

 
 
 
 
 
 
 

0.733691
0.29301
1.88611
1.112354
14.047579
621.857109
−0.356668
−0.396104
−0.416862
0.289352 )

 
 
 
 
 
 
 

,𝝁𝑏2𝑡2
=

(

 
 
 
 
 
 
 

0.658679
0.297305
1.16976
36.439988
35.246384
178.198473
−0.17901
0.223589
−0.317743
0.116319 )

 
 
 
 
 
 
 

,𝝁𝑏2𝑡3
=

(

 
 
 
 
 
 
 

1.14575
0.097793
2.403694
5.423863
231.264715
509.156315
−0.463582
−0.841279
−0.848576
0.151481 )

 
 
 
 
 
 
 

, 

𝝁𝑏2𝑡4
=

(

 
 
 
 
 
 
 

0.110421
0.275511
2.147294
0.51767
40.546161
523.416807
−0.249328
−0.412486
−0.418133
0.209638 )

 
 
 
 
 
 
 

,𝝁𝑏2𝑡5
=

(

 
 
 
 
 
 
 

0.36995
0.11252
2.1912
0.40132
98.571018
327.115464
−0.469845
−0.490396
−0.534467
0.188484 )

 
 
 
 
 
 
 

,𝝁𝑏2𝑡6
=

(

 
 
 
 
 
 
 

0.994044
0.023652
2.827477
0.247914
464.542372
466.548347
−0.413291
−0.537447
−0.573209
0.091406 )

 
 
 
 
 
 
 

, 

𝝁𝑏2𝑡7
=

(

 
 
 
 
 
 
 

1.841332
0.718022
1.755981
3.439172
8.360183
289.869351
−0.056309
−0.113392
−0.174895
0.228243 )

 
 
 
 
 
 
 

,𝝁𝑏2𝑡8
=

(

 
 
 
 
 
 
 

1.014852
0.341248
2.091396
0.851472
16.334651
155.818807
−0.303952
−0.34017
−0.404918
0.243492 )

 
 
 
 
 
 
 

, 
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Σ𝑏2𝑡1
=

[
 
 
 
 
 
 
 
 
 
0.06014 −0.008076 −0.032672 −0.036257 0.417475 −7.945657 0.007564 0.003529 −0.004552 −0.001471
−0.008076 0.020469 0.014596 0.024653 −0.539754 3.542173 −0.002046 −0.000626 0.001745 0.000343
−0.032672 0.014596 0.103658 −0.086046 −1.644286 12.673608 −0.011025 −0.004935 0.002029 0.001425
−0.036257 0.024653 −0.086046 652.200359 19.654641 −91.429786 0.103612 0.106533 0.087648 −0.045256
0.417475 −0.539754 −1.644286 19.654641 929.215915 −659.408123 0.398534 0.355719 0.018227 −0.112266
−7.945657 3.542173 12.673608 −91.429786 −659.408123 16223.78192 −3.401455 0.725311 3.560455 0.630206
0.007564 −0.002046 −0.011025 0.103612 0.398534 −3.401455 0.008011 0.004454 0.001853 −0.000575
0.003529 −0.000626 −0.004935 0.106533 0.355719 0.725311 0.004454 0.012261 0.003664 −0.000334
−0.004552 0.001745 0.002029 0.087648 0.018227 3.560455 0.001853 0.003664 0.009259 0.000634
−0.001471 0.000343 0.001425 −0.045256 −0.112266 0.630206 −0.000575 −0.000334 0.000634 0.001941 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡2
=

[
 
 
 
 
 
 
 
 
 
2.140717 0.000823 0.012886 1.210607 1.01017 3.420715 0.003122 −0.008988 0.002698 0.000407
0.000823 1.225803 0.022758 2.046487 1.699472 5.775353 0.004755 −0.016521 0.003751 0.000154
0.012886 0.022758 3.215861 29.16242 24.274572 82.285341 0.07109 −0.229018 0.059371 0.006182
1.210607 2.046487 29.16242 118167.434 2237.343826 7579.728393 6.616869 −20.969874 5.595759 0.653995
1.01017 1.699472 24.274572 2237.343826 125674.8695 6312.023714 5.516517 −17.450816 4.669721 0.551923
3.420715 5.775353 82.285341 7579.728393 6312.023714 428800.8841 18.67139 −59.162848 15.783878 1.846876
0.003122 0.004755 0.07109 6.616869 5.516517 18.67139 0.368086 −0.050999 0.014598 0.002188
−0.008988 −0.016521 −0.229018 −20.969874 −17.450816 −59.162848 −0.050999 0.666671 −0.043454 −0.005263
0.002698 0.003751 0.059371 5.595759 4.669721 15.783878 0.014598 −0.043454 0.308636 0.003114
0.000407 0.000154 0.006182 0.653995 0.551923 1.846876 0.002188 −0.005263 0.003114 0.054308 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡3

=

[
 
 
 
 
 
 
 
 
 
0.114443 0.002095 0.006511 −0.305635 5.168836 −14.844807 −0.002834 −0.01721 −0.00207 −0.000285
0.002095 0.008685 −0.003426 0.076777 −1.541674 0.677386 0.000644 0.002869 0.000936 0.000789
0.006511 −0.003426 0.07796 −0.159071 −6.784884 27.104764 0.002563 0.01676 −0.001972 0.000486
−0.305635 0.076777 −0.159071 482.830351 −16.003606 96.135845 0.097323 0.270774 0.121965 0.006534
5.168836 −1.541674 −6.784884 −16.003606 9997.579779 −12181.19459 −2.143999 −6.403374 −1.249745 0.315873
−14.844807 0.677386 27.104764 96.135845 −12181.19459 45079.92933 4.969365 23.457062 1.041791 0.175346
−0.002834 0.000644 0.002563 0.097323 −2.143999 4.969365 0.003648 0.00427 0.001591 0.000523
−0.01721 0.002869 0.01676 0.270774 −6.403374 23.457062 0.00427 0.029598 0.002919 0.00268
−0.00207 0.000936 −0.001972 0.121965 −1.249745 1.041791 0.001591 0.002919 0.004756 0.001437
−0.000285 0.000789 0.000486 0.006534 0.315873 0.175346 0.000523 0.00268 0.001437 0.002466 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡4

=

[
 
 
 
 
 
 
 
 
 
0.010315 0.003558 −0.000663 0.081303 0.564006 0.405984 0.001825 0.002237 0.001782 0.000784
0.003558 0.022492 0.000342 0.023268 −1.361118 1.68292 0.002983 0.006544 0.002971 0.001055
−0.000663 0.000342 0.086243 −0.087566 1.518579 −14.689145 −0.003887 −0.002742 −0.004931 −0.000632
0.081303 0.023268 −0.087566 247.000547 4.090684 −12.974617 0.038593 0.063091 0.045512 −0.002078
0.564006 −1.361118 1.518579 4.090684 1945.53733 −1173.434002 0.087778 −1.409679 −0.249561 0.064401
0.405984 1.68292 −14.689145 −12.974617 −1173.434002 45300.98992 1.679133 2.595185 2.000222 1.798773
0.001825 0.002983 −0.003887 0.038593 0.087778 1.679133 0.004333 0.004821 0.003378 0.001543
0.002237 0.006544 −0.002742 0.063091 −1.409679 2.595185 0.004821 0.014179 0.006977 0.002446
0.001782 0.002971 −0.004931 0.045512 −0.249561 2.000222 0.003378 0.006977 0.006505 0.002025
0.000784 0.001055 −0.000632 −0.002078 0.064401 1.798773 0.001543 0.002446 0.002025 0.001932 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡5
=

[
 
 
 
 
 
 
 
 
 
0.035532 0.004383 0.000461 0.063558 4.015366 −3.816191 0.009644 0.01122 0.00133 0.00192
0.004383 0.012182 −0.00345 0.046536 −1.234491 −5.642179 0.007415 0.006831 0.001971 0.001806
0.000461 −0.00345 0.147067 −0.120239 4.523266 −42.359306 −0.000503 −0.004915 −0.006552 −0.005438
0.063558 0.046536 −0.120239 297.204168 −3.286785 0.452213 0.084751 0.082462 0.062133 0.000427
4.015366 −1.234491 4.523266 −3.286785 4382.126213 −732.471572 −0.437392 −0.018407 0.065854 −0.180156
−3.816191 −5.642179 −42.359306 0.452213 −732.471572 31813.78435 −9.868748 −7.074935 1.255976 0.906287
0.009644 0.007415 −0.000503 0.084751 −0.437392 −9.868748 0.019315 0.016406 0.004107 0.003073
0.01122 0.006831 −0.004915 0.082462 −0.018407 −7.074935 0.016406 0.0211 0.006124 0.00408
0.00133 0.001971 −0.006552 0.062133 0.065854 1.255976 0.004107 0.006124 0.008235 0.003431
0.00192 0.001806 −0.005438 0.000427 −0.180156 0.906287 0.003073 0.00408 0.003431 0.003157 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡6
=

[
 
 
 
 
 
 
 
 
 
0.260152 −0.000759 −0.07807 −0.071349 −74.517392 −74.548034 0.000568 −0.007383 0.002285 −0.002711
−0.000759 0.005694 −0.003277 0.069601 0.006431 0.279731 0.000276 0.000299 0.000637 0.00042
−0.07807 −0.003277 0.163365 −0.266907 50.350178 48.476528 0.000908 0.002219 −0.005132 −0.000536
−0.071349 0.069601 −0.266907 444.164393 −87.907423 −36.135977 0.077848 0.093787 0.078571 0.008917
−74.517392 0.006431 50.350178 −87.907423 56283.73209 54998.84085 1.030493 4.385472 −1.619441 1.55398
−74.548034 0.279731 48.476528 −36.135977 54998.84085 55925.68443 1.248181 4.606288 −1.336685 1.617551
0.000568 0.000276 0.000908 0.077848 1.030493 1.248181 0.003248 0.001294 0.000463 0.000327
−0.007383 0.000299 0.002219 0.093787 4.385472 4.606288 0.001294 0.004592 0.000047 0.000589
0.002285 0.000637 −0.005132 0.078571 −1.619441 −1.336685 0.000463 0.000047 0.002383 0.000301
−0.002711 0.00042 −0.000536 0.008917 1.55398 1.617551 0.000327 0.000589 0.000301 0.001147 ]

 
 
 
 
 
 
 
 
 

, 

Σ𝑏2𝑡7
=

[
 
 
 
 
 
 
 
 
 
0.664992 0.064582 0.044836 −0.740218 −4.80114 58.369125 −0.011792 −0.037875 −0.001233 0.028489
0.064582 0.073847 0.047572 −0.381734 −1.907918 −3.98616 −0.000768 0.004088 −0.002518 0.006428
0.044836 0.047572 0.135309 −0.987556 −0.938017 14.097774 −0.010419 −0.003655 −0.011878 0.012202
−0.740218 −0.381734 −0.987556 390.527618 24.472053 −253.63455 0.298702 0.106712 0.095716 −0.202949
−4.80114 −1.907918 −0.938017 24.472053 612.380687 −405.159002 0.472932 0.284248 0.073249 −0.420891
58.369125 −3.98616 14.097774 −253.63455 −405.159002 43202.52485 −7.498365 −16.248078 −3.574697 7.873121
−0.011792 −0.000768 −0.010419 0.298702 0.472932 −7.498365 0.016606 0.008903 0.002473 −0.003567
−0.037875 0.004088 −0.003655 0.106712 0.284248 −16.248078 0.008903 0.019725 0.001675 −0.004679
−0.001233 −0.002518 −0.011878 0.095716 0.073249 −3.574697 0.002473 0.001675 0.005796 −0.002676
0.028489 0.006428 0.012202 −0.202949 −0.420891 7.873121 −0.003567 −0.004679 −0.002676 0.005017 ]

 
 
 
 
 
 
 
 
 

, 
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Σ𝑏2𝑡8
=

[
 
 
 
 
 
 
 
 
 
0.419793 −0.00464 0.006104 −0.063121 1.532001 26.322499 −0.000716 −0.005122 0.015477 0.003489
−0.00464 0.027888 0.002442 0.04575 −0.608392 0.874365 0.008064 0.008209 0.004769 0.00115
0.006104 0.002442 0.124974 −0.094322 0.327492 1.591006 −0.004556 −0.007818 −0.005713 −0.00231
−0.063121 0.04575 −0.094322 90.338091 2.479707 −9.204134 0.066078 0.065373 0.054813 0.003732
1.532001 −0.608392 0.327492 2.479707 378.048846 631.525289 0.036195 −0.018803 0.004193 0.032235
26.322499 0.874365 1.591006 −9.204134 631.525289 17191.97124 1.363858 2.56628 0.379649 0.648953
−0.000716 0.008064 −0.004556 0.066078 0.036195 1.363858 0.015201 0.015065 0.007225 0.001366
−0.005122 0.008209 −0.007818 0.065373 −0.018803 2.56628 0.015065 0.021197 0.007344 0.001525
0.015477 0.004769 −0.005713 0.054813 0.004193 0.379649 0.007225 0.007344 0.010115 0.001062
0.003489 0.00115 −0.00231 0.003732 0.032235 0.648953 0.001366 0.001525 0.001062 0.002081]

 
 
 
 
 
 
 
 
 

. 

2.2 Parameters of the SAE Level 3 NDRT Model 

For any number of time slices 𝑇 ≥ 1, the SAE Level 3 NDRT model defines the JPD 

𝑝(𝑆1
1:𝑇 , 𝐵1:𝑇 , 𝑭Rel

1:𝑇 ∶ 𝜽)

= 𝑝(𝐵1 ∶ 𝜽𝐵1)∏𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1)

𝑇

𝑡=2

∏𝑝(𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡)

𝑇

𝑡=1

𝑝(𝑭Rel
𝑡 |𝐵𝑡 ∶ 𝜽), 

with 𝑝(𝑭Rel
𝑡  | 𝐵𝑡 ∶ 𝜽) factorizing as 

𝑝 (𝐹45
𝑡 |𝐵𝑡 ∶ 𝜽𝐹45𝑡 |𝐵𝑡) 𝑝 (𝐹17

𝑡 , 𝐹20
𝑡 |𝐵𝑡 , 𝐹4

𝑡 ∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝐵𝑡,𝐹4𝑡) 𝑝 (𝐹7
𝑡 , 𝐹58

𝑡 , 𝐹43
𝑡 |𝐵𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝐵𝑡) 

𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝐵𝑡)𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝐵𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝐵𝑡) 

𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝐵𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝐵𝑡)𝑝 (𝐹11

𝑡 |𝐵𝑡, 𝐹2
𝑡 ∶ 𝜽𝐹11𝑡 |𝐵𝑡,𝐹2𝑡). 

As such, the model is defined by ten probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel =

{𝐹2, 𝐹4, 𝐹7, 𝐹9, 𝐹10, 𝐹11, 𝐹12, 𝐹16, 𝐹17, 𝐹20, 𝐹30, 𝐹32, 𝐹34, 𝐹36, 𝐹38, 𝐹42, 𝐹43, 𝐹45, 𝐹52, 𝐹58, 𝐹60, 𝐹66}  are 

provided in Table 6. 

Table 25: The set of relevant indicators for the SAE Level 3 NDRT model, 𝑭Rel =
{𝐹2, 𝐹4, 𝐹7, 𝐹9, 𝐹10, 𝐹11, 𝐹12, 𝐹16, 𝐹17, 𝐹20, 𝐹30, 𝐹32, 𝐹34, 𝐹36, 𝐹38, 𝐹42, 𝐹43, 𝐹45, 𝐹52, 𝐹58, 𝐹60, 𝐹66}. 

Symbol Name 

𝐹2  ead rota on valid 

𝐹4 Gaze direc on valid 

𝐹7 Pupil diameter variability 

𝐹9 Mean blink frequency 

𝐹10 Blink frequency variability 

𝐹11 Yaw angle of the head 

𝐹12 Mean yaw angle of the head 

𝐹16 Yaw rate of the head variability 

𝐹17 Gaze heading 

𝐹20 Gaze pitch 

𝐹30 Monitoring frequency variability 

𝐹32 Mean saccade frequency 

𝐹34 Dwell percentage 

𝐹36 Dwell percentage variability 

𝐹38 Mean  me since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  
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𝐹43 Mean  me since last look at right mirror AO  

𝐹45 Right mirror AO  dwell percentage 

𝐹52 Time since last look at tachometer AO  

𝐹58 Mean  me since last look at infotainment AO  

𝐹60  nfotainment AO  dwell percentage 

𝐹66 Front AO  frequency 

 

Distribution 𝑝(𝐵1 ∶ 𝜽𝐵1) 
The distribution 𝑝(𝐵1 ∶ 𝜽𝐵1) is a categorical distribution  

𝑝(𝐵1 ∶ 𝜽𝐵1) = Cat(𝐵
1 ∶ 𝜽𝐵1) 

over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 𝑡 = 1, with MAP parameters  

𝜽𝐵1 = {𝜃𝑏01 , 𝜃𝑏11 , 𝜃𝑏21} = {0.351067, 0.325515, 0.323418}. 

Distribution 𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1) 

The distribution 𝑝(𝐵𝑡|𝐵𝑡−1 ∶ 𝜽𝐵𝑡|𝐵𝑡−1) over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 

𝑡 > 1 is a collection of categorical distributions with a categorical distribution 

𝑝(𝐵𝑡|𝑏𝑡−1 ∶ 𝜽𝐵𝑡|𝑏𝑡−1) = Cat(𝐵
𝑡 ∶ 𝜽𝐵𝑡|𝑏𝑡−1) 

for each 𝑏𝑡−1 ∈ Val(𝐵) , parameterized with MAP parameters 𝜽𝐵𝑡|𝐵𝑡−1 =

{𝜽𝐵𝑡|𝑏0𝑡−1 , 𝜽𝐵𝑡|𝑏1𝑡−1 , 𝜽𝐵𝑡|𝑏2𝑡−1}, where 

𝜽𝐵𝑡|𝑏0𝑡−1 = {𝜃𝑏0𝑡|𝑏0𝑡−1 , 𝜃𝑏1𝑡|𝑏0𝑡−1 , 𝜃𝑏2𝑡|𝑏0𝑡−1} =
{0.999424, 0.000288, 0.000288 }, 

𝜽𝐵𝑡|𝑏1𝑡−1 = {𝜃𝑏0𝑡|𝑏1𝑡−1 , 𝜃𝑏1𝑡|𝑏1𝑡−1 , 𝜃𝑏2𝑡|𝑏1𝑡−1} =
{0.000311, 0.999378, 0.000311}, 

𝜽𝐵𝑡|𝑏2𝑡−1 = {𝜃𝑏0𝑡|𝑏2𝑡−1 , 𝜃𝑏1𝑡|𝑏2𝑡−1 , 𝜃𝑏2𝑡|𝑏2𝑡−1} =
{0.000313, 0.000313, 0.999374}. 

Distribution 𝑝(𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡) 

The distribution 𝑝 (𝑆1
𝑡|𝐵𝑡 ∶ 𝜽𝑆1𝑡|𝐵𝑡) over the binary variable 𝑆1, Val(𝑆1) = {𝑠10, 𝑠11} at time slice 𝑡 ≥ 1 

is a collection of categorical distributions with a categorical distribution 

𝑝 (𝑆1
𝑡 ∶ 𝑏𝑡 , 𝜽𝑆1𝑡|𝑏𝑡) = Cat (𝑆1

𝑡 ∶ 𝜽𝑆1𝑡|𝑏𝑡) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝑆1𝑡|𝐵𝑡 = {𝜽𝑆1𝑡|𝑏0𝑡 , 𝜽𝑆1𝑡|𝑏1𝑡 , 𝜽𝑆1𝑡|𝑏2𝑡}, where 

𝜽𝑆1𝑡|𝑏0𝑡 = {𝜃𝑠1𝑡0|𝑏0
𝑡 , 𝜃𝑠1𝑡1|𝑏0

𝑡} = {0.000446, 0.999554}, 

𝜽𝑆1𝑡|𝑏1𝑡 = {𝜃𝑠1𝑡0|𝑏1
𝑡 , 𝜃𝑠1𝑡1|𝑏1

𝑡} = {0.999519, 0.000481}, 

𝜽𝑆1𝑡|𝑏2𝑡 = {𝜃𝑠1𝑡0|𝑏2
𝑡 , 𝜃𝑠1𝑡1|𝑏2

𝑡} = {0.999516, 0.000484}. 

Distribution 𝑝 (𝐹45
𝑡 |𝐵𝑡 ∶ 𝜽𝐹45𝑡 |𝐵𝑡) 
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The distribution 𝑝 (𝐹45
𝑡 |𝐵𝑡 ∶ 𝜽𝐹45𝑡 |𝐵𝑡) over the continuous variable 𝐹45 at time slice 𝑡 ≥ 1 is a collection 

of Gaussian mixture distributions with a GMM  

𝑝 (𝐹45
𝑡 |𝑏𝑡 ∶ 𝜽𝐹45𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡𝑖𝒩(𝜇𝑏𝑡 𝑖, 𝜎𝑏𝑡

2

𝑖
)

𝑛𝑏

𝑖=1

 

composed of 𝑛𝑏  components for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝐹45𝑡 |𝐵𝑡 =

{𝜽𝐹45𝑡 |𝑏0𝑡 , 𝜽𝐹45𝑡 |𝑏1𝑡 , 𝜽𝐹45𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹45
𝑡 |𝑏0

𝑡 ∶ 𝜽𝐹45𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖
, 𝜇𝑏0𝑡𝑖

, 𝜎
𝑏0
𝑡
2

𝑖
}
𝑖=1

4

}) 

consists of four components, where  

𝜋𝑏0𝑡1
= 0.0041, 𝜋𝑏0𝑡2

= 0.926419, 𝜋𝑏0𝑡3
= 0.02003, 𝜋𝑏0𝑡4

= 0.049452, 

𝜇𝑏0𝑡1
= 0.375621, 𝜇𝑏0𝑡2

= 0.000018, 𝜇𝑏0𝑡3
= 0.022852, 𝜇𝑏0𝑡4

= 0.007424, 

𝜎
𝑏0
𝑡
2

1
= 0.033238, 𝜎

𝑏0
𝑡
2

2
= 3.7154e-7, 𝜎

𝑏0
𝑡
2

3
= 0.00012, 𝜎

𝑏0
𝑡
2

4
= 0.000029. 

The distribution  

𝑝 (𝐹45
𝑡 |𝑏1

𝑡 ∶ 𝜽𝐹45𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖
, 𝜇𝑏1𝑡𝑖

, 𝜎
𝑏1
𝑡
2

𝑖
}
𝑖=1

4
}) 

consists of four components, where  

𝜋𝑏1𝑡1
= 0.012508, 𝜋𝑏1𝑡2

= 0.043687, 𝜋𝑏1𝑡3
= 0.048598, 𝜋𝑏1𝑡4

= 0.895207, 

𝜇𝑏1𝑡1
= 0.093504, 𝜇𝑏1𝑡2

= 0.008892, 𝜇𝑏1𝑡3
= 0.040133, 𝜇𝑏1𝑡4

= 0.000016, 

𝜎
𝑏1
𝑡
2

1
= 0.000358, 𝜎

𝑏1
𝑡
2

2
= 0.000045, 𝜎

𝑏1
𝑡
2

3
= 0.000178, 𝜎

𝑏1
𝑡
2

4
= 4.0639e-7. 

The distribution  

𝑝 (𝐹45
𝑡 |𝑏2

𝑡 ∶ 𝜽𝐹45𝑡 |𝑏2𝑡 = {{𝜋𝑏2𝑡 𝑖
, 𝜇𝑏2𝑡𝑖

, 𝜎
𝑏2
𝑡
2

𝑖
}
𝑖=1

5
}) 

consists of five components, where  

𝜋𝑏2𝑡1
= 0.243136, 𝜋𝑏2𝑡2

= 0.243136, 𝜋𝑏2𝑡3
= 0.243136, 𝜋𝑏2𝑡4

= 0.243136, 𝜋𝑏2𝑡5
= 0.027455, 

𝜇𝑏2𝑡1
= 9.8394e-6, 𝜇𝑏2𝑡2

= 9.8394e-6, 𝜇𝑏2𝑡3
= 9.8394e-6, 𝜇𝑏2𝑡4

= 9.8394e-6, 𝜇𝑏2𝑡5
= 0.010093 

𝜎
𝑏2
𝑡
2

1
= 1.4213e-6, 𝜎

𝑏2
𝑡
2

2
= 1.4213e-6, 𝜎

𝑏2
𝑡
2

3
= 1.4213e-6, 𝜎

𝑏2
𝑡
2

4
= 1.4213e-6, 𝜎

𝑏2
𝑡
2

5
= 0.000041. 

Distribution 𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝐵𝑡, 𝐹4
𝑡 ∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝐵𝑡,𝐹4𝑡) 
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The distribution 𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝐵𝑡 , 𝐹4
𝑡 ∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝐵𝑡,𝐹4𝑡)  over the two-dimensional vector of continuous 

variables (𝐹17, 𝐹20)  at time slice 𝑡 ≥ 1 is a collection of bivariate Gaussian mixture distributions with 

a bivariate GMM  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏𝑡, 𝑓2
t ∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏𝑡,𝑓4𝑡) = ∑𝜋𝑏𝑡𝑖𝒩(𝝁𝑏𝑡,𝑓𝑡𝑖

, Σ𝑏𝑡,𝑓𝑡𝑖
)

𝑛𝑏,𝑓

𝑖=1

 

composed of 𝑛𝑏,𝑓  components for each {𝑏𝑡, 𝑓4
𝑡} ∈ Val(𝐵) × Val(𝐹4) , parameterized with MAP 

parameters  

𝜽𝐹17𝑡 ,𝐹20𝑡 |𝐵𝑡,𝐹4𝑡 = {𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏0𝑡 ,𝑓0𝑡 , 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏1𝑡 ,𝑓0𝑡 , 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏2𝑡 ,𝑓0𝑡 , 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏0𝑡 ,𝑓1𝑡 , 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏1𝑡 ,𝑓1𝑡 , 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏2𝑡 ,𝑓1𝑡}. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏0
𝑡 , 𝑓4

𝑡
0
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏0𝑡 ,𝑓0𝑡 = {{𝜋𝑏0𝑡 ,𝑓0𝑡 𝑖

, 𝝁𝑏0𝑡 ,𝑓0𝑡𝑖
, Σ𝑏0𝑡 ,𝑓0𝑡𝑖

}
𝑖=1

1
}) 

consists of one component, where  

𝜋𝑏0𝑡 ,𝑓0𝑡1
= 1, 𝝁𝑏0𝑡 ,𝑓0𝑡1

= (
−0.086255
−0.207994

) , Σ𝑏0𝑡 ,𝑓0𝑡1
= [
4.989933 0

0 2.217657
]. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏1
𝑡, 𝑓4

𝑡
0
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏1𝑡 ,𝑓0𝑡 = {{𝜋𝑏1𝑡 ,𝑓0𝑡𝑖

, 𝝁𝑏1𝑡 ,𝑓0𝑡𝑖
, Σ𝑏1𝑡 ,𝑓0𝑡 𝑖

}
𝑖=1

1
}) 

consists of one component, where  

𝜋𝑏1𝑡 ,𝑓0𝑡1
= 1, 𝝁𝑏1𝑡 ,𝑓0𝑡1

= (
−0.086255
−0.207994

) , Σ𝑏1𝑡 ,𝑓0𝑡1
= [
4.989933 0

0 2.217657
]. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏2
𝑡 , 𝑓4

𝑡
0
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏2𝑡 ,𝑓0𝑡 = {{𝜋𝑏2𝑡 ,𝑓0𝑡 𝑖

, 𝝁𝑏2𝑡 ,𝑓0𝑡𝑖
, Σ𝑏2𝑡 ,𝑓0𝑡𝑖

}
𝑖=1

1
}) 

consists of one component, where  

𝜋𝑏2𝑡 ,𝑓0𝑡1
= 1, 𝝁𝑏2𝑡 ,𝑓0𝑡1

= (
−0.086255
−0.207994

) , Σ𝑏2𝑡 ,𝑓0𝑡1
= [
4.989933 0

0 2.217657
]. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏0
𝑡 , 𝑓4

𝑡
1
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏0𝑡 ,𝑓1𝑡 = {{𝜋𝑏0𝑡 ,𝑓1𝑡𝑖

, 𝝁𝑏0𝑡 ,𝑓1𝑡𝑖
, Σ𝑏0𝑡 ,𝑓1𝑡𝑖

}
𝑖=1

7
}) 

consists of seven components, where  

𝜋𝑏0𝑡 ,𝑓1𝑡1
= 0.060685, 𝜋𝑏0𝑡 ,𝑓1𝑡2

= 0.077781, 𝜋𝑏0𝑡 ,𝑓1𝑡3
= 0.565049, 𝜋𝑏0𝑡 ,𝑓1𝑡4

= 0.146582, 

𝜋𝑏0𝑡 ,𝑓1𝑡5
= 0.083988, 𝜋𝑏0𝑡 ,𝑓1𝑡6

= 0.016744, 𝜋𝑏0𝑡 ,𝑓1𝑡7
= 0.04917, 

𝝁𝑏0𝑡 ,𝑓1𝑡1
= (

−0.541597
0.009207

) , 𝝁𝑏0𝑡 ,𝑓1𝑡2
= (

0.682617
−0.321907

) , 𝝁𝑏0𝑡 ,𝑓1𝑡3
= (

0.00675
−0.065621

), 
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𝝁𝑏0𝑡 ,𝑓1𝑡4
= (

0.087835
−0.078207

) , 𝝁𝑏0𝑡 ,𝑓1𝑡5
= (

0.073547
−0.115864

) , 𝝁𝑏0𝑡 ,𝑓1𝑡6
= (

−0.409551
−0.151175

), 

𝝁𝑏0𝑡 ,𝑓1𝑡7
= (

0.097175
−0.443795

), 

 Σ𝑏0𝑡 ,𝑓1𝑡1
= [

0.009947 −0.001771
−0.001771 0.004572

] , Σ𝑏0𝑡 ,𝑓1𝑡2
= [
0.007001 0.000381
0.000381 0.004523

], 

 Σ𝑏0𝑡 ,𝑓1𝑡3
= [

0.002536 −0.000671
−0.000671 0.000941

] , Σ𝑏0𝑡 ,𝑓1𝑡4
= [

0.049745 −0.004773
−0.004773 0.002749

], 

Σ𝑏0𝑡 ,𝑓1𝑡5
= [
0.414968 0.008459
0.008459 0.013105

] , Σ𝑏0𝑡 ,𝑓1𝑡6
= [
0.285366 0.006683
0.006683 0.085211

], 

Σ𝑏0𝑡 ,𝑓1𝑡7
= [

0.010575 −0.000727
−0.000727 0.007919

]. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏1
𝑡, 𝑓4

𝑡
1
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏1𝑡 ,𝑓1𝑡 = {{𝜋𝑏1𝑡 ,𝑓1𝑡𝑖

, 𝝁𝑏1𝑡 ,𝑓1𝑡𝑖
, Σ𝑏1𝑡 ,𝑓1𝑡𝑖

}
𝑖=1

8
}) 

consists of eight components, where  

𝜋𝑏1𝑡 ,𝑓1𝑡1
= 0.705296, 𝜋𝑏1𝑡 ,𝑓1𝑡2

= 0.04684, 𝜋𝑏1𝑡 ,𝑓1𝑡3
= 0.010643, 

𝜋𝑏1𝑡 ,𝑓1𝑡4
= 0.00922, 𝜋𝑏1𝑡 ,𝑓1𝑡5

= 0.053758, 𝜋𝑏1𝑡 ,𝑓1𝑡6
= 0.003761, 

𝜋𝑏1𝑡 ,𝑓1𝑡7
= 0.070669, 𝜋𝑏1𝑡 ,𝑓1𝑡8

= 0.099812, 

𝝁𝑏1𝑡 ,𝑓1𝑡1
= (

0.015512
−0.07703

) , 𝝁𝑏1𝑡 ,𝑓1𝑡2
= (

−0.546049
0.002305

) , 𝝁𝑏1𝑡 ,𝑓1𝑡3
= (

−0.269904
−0.41516

), 

𝝁𝑏1𝑡 ,𝑓1𝑡4
= (

−1.002795
−0.153243

) , 𝝁𝑏1𝑡 ,𝑓1𝑡5
= (

−0.029412
−0.196255

) , 𝝁𝑏1𝑡 ,𝑓1𝑡6
= (

0.245931
0.037466

), 

𝝁𝑏1𝑡 ,𝑓1𝑡7
= (

0.635173
−0.326585

) , 𝝁𝑏1𝑡 ,𝑓1𝑡8
= (

0.099579
−0.055232

), 

 Σ
𝑏1
𝑡 ,𝑓1
𝑡

1
= [

0.001415 −0.000075
−0.000075 0.00092

] , Σ
𝑏1
𝑡 ,𝑓1
𝑡

2
= [

0.009258 −0.002274
−0.002274 0.007474

], 

 Σ
𝑏1
𝑡 ,𝑓1
𝑡

3
= [
0.081442 0.002338
0.002338 0.026413

] , Σ
𝑏1
𝑡 ,𝑓1
𝑡

4
= [

0.054998 −0.002912
−0.002912 0.015058

], 

Σ
𝑏1
𝑡 ,𝑓1
𝑡

5
= [

0.01493 −0.009576
−0.009576 0.034119

] , Σ
𝑏1
𝑡 ,𝑓1
𝑡

6
= [

0.428541 −0.037214
−0.037214 0.101003

], 

Σ
𝑏1
𝑡 ,𝑓1
𝑡

7
= [
0.007759 0.000152
0.000152 0.006165

] , Σ
𝑏1
𝑡 ,𝑓1
𝑡

8
= [

0.048551 −0.003522
−0.003522 0.006642

]. 

The distribution  

𝑝 (𝐹17
𝑡 , 𝐹20

𝑡 |𝑏2
𝑡 , 𝑓4

𝑡
1
∶ 𝜽𝐹17𝑡 ,𝐹20𝑡 |𝑏2𝑡 ,𝑓1𝑡 = {{𝜋𝑏2𝑡 ,𝑓1𝑡𝑖

, 𝝁𝑏2𝑡 ,𝑓1𝑡𝑖
, Σ𝑏2𝑡 ,𝑓1𝑡𝑖

}
𝑖=1

5
}) 

consists of five components, where  

𝜋𝑏2𝑡 ,𝑓1𝑡1
= 0.055343, 𝜋𝑏2𝑡 ,𝑓1𝑡2

= 0.101241, 𝜋𝑏2𝑡 ,𝑓1𝑡3
= 0.741498, 
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𝜋𝑏2𝑡 ,𝑓1𝑡4
= 0.00309, 𝜋𝑏2𝑡 ,𝑓1𝑡5

= 0.098829, 

𝝁𝑏2𝑡 ,𝑓1𝑡1
= (

−0.413927
−0.772137

) , 𝝁𝑏2𝑡 ,𝑓1𝑡2
= (

−0.244466
−0.10883

) , 𝝁𝑏2𝑡 ,𝑓1𝑡3
= (

−0.513355
−0.589431

), 

𝝁𝑏2𝑡 ,𝑓1𝑡4
= (

0.131744
−0.570139

) , 𝝁𝑏2𝑡 ,𝑓1𝑡5
= (

0.02788
−0.075629

), 

 Σ
𝑏2
𝑡 ,𝑓1
𝑡

1
= [

0.099779 −0.014832
−0.014832 0.054602

] , Σ
𝑏2
𝑡 ,𝑓1
𝑡

2
= [

0.253046 −0.051573
−0.051573 0.027301

], 

 Σ
𝑏2
𝑡 ,𝑓1
𝑡

3
= [

0.016979 −0.002544
−0.002544 0.011119

] , Σ
𝑏2
𝑡 ,𝑓1
𝑡

4
= [

0.310457 −0.095383
−0.095383 0.292944

], 

Σ
𝑏2
𝑡 ,𝑓1
𝑡

5
= [
0.006297 0.000138
0.000138 0.002303

]. 

Distribution 𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝐵𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝐵𝑡) 

The distribution 𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝐵𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝐵𝑡)  over a three-dimensional vector of continuous 

variables (𝐹7, 𝐹58, 𝐹43) at time slice 𝑡 ≥ 1 is a collection of multivariate Gaussian mixture distributions 

with a multivariate GMM  

𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝑏𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡𝑖𝒩(𝝁𝑏𝑡 𝑖, Σ𝑏𝑡𝑖)

𝑛𝑏

𝑖=1

 

composed of 𝑛𝑏  components for each 𝑏𝑡 ∈ Val(𝐵) , parameterized with MAP parameters 

𝜽𝐹7𝑡,…,𝐹43𝑡 |𝐵𝑡 = {𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏0𝑡 , 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏1𝑡 , 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝑏0

𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖
, 𝝁𝑏0𝑡𝑖

, Σ𝑏0𝑡 𝑖
}
𝑖=1

9
}) 

consists of nine components, where  

𝜋𝑏0𝑡1
= 0.116926, 𝜋𝑏0𝑡2

= 0.132012, 𝜋𝑏0𝑡3
= 0093628, 

𝜋𝑏0𝑡4
= 0.236375, 𝜋𝑏0𝑡5

= 0.038621, 𝜋𝑏0𝑡6
= 0.005913, 

𝜋𝑏0𝑡7
= 0.262419, 𝜋𝑏0𝑡8

= 0.10419, 𝜋𝑏0𝑡9
= 0.009918, 

𝝁𝑏0𝑡1
= (

0.000357
60.445776
465.063784

) , 𝝁𝑏0𝑡2
= (

0.000263
126.246888
53.262756

) , 𝝁𝑏0𝑡3
= (

0.000478
31.457492
56.395437

), 

𝝁𝑏0𝑡4
= (

0.000173
59.26661
92.537564

) , 𝝁𝑏0𝑡5
= (

0.000204
407.372676
479.222643

) , 𝝁𝑏0𝑡6
= (

0.001446
69.229103
397.991361

), 

𝝁𝑏0𝑡7
= (

0.000223
24.020484
232.480424

) , 𝝁𝑏0𝑡8
= (

0.00028
163.432617
230.398624

) , 𝝁𝑏0𝑡9
= (

0.001169
92.827234
53.103306

), 

 Σ𝑏0𝑡1
= [

2.4509e-8 −0.001049 −0.00199
−0.001049 1454.470942 511.185861
−0.00199 511.185861 4564.496159

] , Σ𝑏0𝑡2
= [

1.3082e-8 −0.000482 0.001798
−0.000482 2273.545082 −273.916668
0.001798 −273.916668 1773.062508

],  
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Σ𝑏0𝑡3
= [

4.1325e-8 −0.0014 −0.002496
−0.0014 800.497342 595.092411
−0.002496 595.092411 1979.139837

] , Σ𝑏0𝑡4
= [

4.5022e-9 −0.000185 −0.000557
−0.000185 1118.421241 880.482994
−0.000557 880.482994 3099.338621

], 

 Σ𝑏0𝑡5
= [
3.0394e-8 0.001587 0.001626
0.001587 2509.285491 1896.834595
0.001626 1896.834595 2764.966613

] , Σ𝑏0𝑡6
= [
5.1470e-7 0.01643 0.036807
0.01643 4513.635891 1152.850965
0.036807 1152.850965 9632.065782

], 

Σ𝑏0𝑡7
= [
7.2935𝑒 − 9 −0.000059 0.000587
−0.000059 341.060922 340.458268
0.000587 340.458268 13252.27354

] , Σ𝑏0𝑡8
= [
1.4413𝑒 − 8 0.003262 −0.000914
0.003262 3290.294604 −93.205655
−0.000914 −93.205655 2903.398131

], 

 Σ𝑏0𝑡9
= [
3.8649𝑒 − 7 −0.042143 −0.020577
−0.042143 9274.476445 3041.157569
−0.020577 3041.157569 5873.543773

]. 

The distribution  

𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝑏1

𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖
, 𝝁𝑏1𝑡𝑖

, Σ𝑏1𝑡 𝑖
}
𝑖=1

7
}) 

consists of seven components, where  

𝜋𝑏1𝑡1
= 0.046635, 𝜋𝑏1𝑡2

= 0.008009, 𝜋𝑏1𝑡3
= 0.099755, 

𝜋𝑏1𝑡4
= 0.56357, 𝜋𝑏1𝑡5

= 0.124829, 𝜋𝑏1𝑡6
= 0.124162, 

𝜋𝑏1𝑡7
= 0.03304, 

𝝁𝑏1𝑡1
= (

0.000194
142.914008
77.743366

) , 𝝁𝑏1𝑡2
= (

0.000808
192.505648
335.65919

) , 𝝁𝑏1𝑡3
= (

0.000413
52.732736
40.155825

), 

𝝁𝑏1𝑡4
= (

0.000274
214.889271
228.417813

) , 𝝁𝑏1𝑡5
= (

0.000361
114.940917
260.457261

) , 𝝁𝑏1𝑡6
= (

0.000414
338.31525
32.338659

), 

𝝁𝑏1𝑡7
= (

0.000214
36.960203
443.747062

), 

 Σ𝑏1𝑡1
= [

1.2802e-8 −0.000772 −0.000106
−0.000772 3124.963561 1162.741171
−0.000106 1162.741171 2463.244067

] , Σ𝑏1𝑡2
= [

1.8658e-7 −0.005624 −0.014598
−0.005624 15181.02221 11203.76446
−0.014598 11203.76446 18371.87139

],  

Σ𝑏1𝑡3
= [

2.8183e-8 −0.002127 −0.000753
−0.002127 1122.241348 170.570597
−0.000753 170.570597 1528.277141

] , Σ𝑏1𝑡4
= [

2.2098e-8 −0.005135 −0.004638
−0.005135 23027.09138 22735.01559
−0.004638 22735.01559 22660.68877

],  

Σ𝑏1𝑡5
= [
3.1902e-8 0.008007 0.005982
0.008007 6230.531822 5243.110329
0.005982 5243.110329 5292.376553

] , Σ𝑏1𝑡6
= [
1.3462e-8 0.00154 0.000429
0.00154 3190.224345 273.331221
0.000429 273.331221 1191.494545

], 

Σ𝑏1𝑡7
= [

1.6363e-8 0.000198 −0.002807
0.000198 1392.377827 −288.214407
−0.002807 −288.214407 6847.526558

]. 

The distribution  

𝑝 (𝐹7
𝑡, 𝐹58

𝑡 , 𝐹43
𝑡 |𝑏2

𝑡 ∶ 𝜽𝐹7𝑡,…,𝐹43𝑡 |𝑏2𝑡 = {{𝜋𝑏2𝑡 𝑖
, 𝝁𝑏2𝑡𝑖

, Σ𝑏2𝑡 𝑖
}
𝑖=1

2
}) 

consists of two components, where  
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𝜋𝑏2𝑡1
= 0.023254, 𝜋𝑏2𝑡2

= 0.976746, 

𝝁𝑏2𝑡1
= (

0.003461
4.731391
403.234708

) , 𝝁𝑏2𝑡2
= (

0.000722
0.480384
234.366398

), 

 Σ𝑏2𝑡1
= [

1.5702e-6 −0.006964 −0.004462
−0.006964 1109.863582 62.763171
−0.004462 62.763171 17833.41172

] , Σ𝑏2𝑡2
= [

1.5775e-7 0.000053 −0.008444
0.000053 26.636652 7.611175
−0.008444 7.611175 24802.69987

]. 

Distribution 𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡 ,…,𝐹66𝑡 |𝐵𝑡) 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝐵𝑡)  over a eight-dimensional 

vector of continuous variables (𝐹9, 𝐹16, 𝐹32, 𝐹34, 𝐹52, 𝐹42, 𝐹12, 𝐹66) at time slice 𝑡 ≥ 1 is a collection of 

multivariate Gaussian mixture distributions with a multivariate GMM  

𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝑏𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡𝑖𝒩(𝝁𝑏𝑡 𝑖, Σ𝑏𝑡 𝑖)

𝑛𝑏

𝑖=1

 

composed of 𝑛𝑏  components for each 𝑏𝑡 ∈ Val(𝐵) , parameterized with MAP parameters 

𝜽𝐹9𝑡,…,𝐹66𝑡 |𝐵𝑡 = {𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏0𝑡 , 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏1𝑡 , 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝑏0
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖

, 𝝁𝑏0𝑡𝑖
, Σ𝑏0𝑡 𝑖

}
𝑖=1

8
}) 

consists of eight components, where  

𝜋𝑏0𝑡1
= 0.002053, 𝜋𝑏0𝑡2

= 0.040003, 𝜋𝑏0𝑡3
= 0.284031, 

𝜋𝑏0𝑡4
= 0.00322, 𝜋𝑏0𝑡5

= 0.04463, 𝜋𝑏0𝑡6
= 0.048237, 

𝜋𝑏0𝑡7
= 0.17114, 𝜋𝑏0𝑡8

= 0.406686, 

𝝁𝑏0𝑡1
=

(

 
 
 
 
 

0.81975
2.623162
1.944301
0.459535
15.790784
34.066807
−0.375772
0.46986 )

 
 
 
 
 

,𝝁𝑏0𝑡2
=

(

 
 
 
 
 

0.297115
0.341997
1.135936
0.725991
139.367746
72.582847
0.080933
0.290121 )

 
 
 
 
 

,𝝁𝑏0𝑡3
=

(

 
 
 
 
 

0.379798
0.098594
1.294088
0.933292
27.583977
106.842192
0.087405
0.308929 )

 
 
 
 
 

, 

𝝁𝑏0𝑡4
=

(

 
 
 
 
 

2.48979
0.211666
1.087206
0.942484
92.813902
443.931027
−0.01615
0.260306 )

 
 
 
 
 

, 𝝁𝑏0𝑡5
=

(

 
 
 
 
 

0.749833
0.305987
1.902421
0.787972
97.59248
444.517175
0.13999
0.26187 )

 
 
 
 
 

, 𝝁𝑏0𝑡6
=

(

 
 
 
 
 

0.492039
0.459523
2.092578
0.637556
11.988973
129.40794
−0.060228
0.516885 )

 
 
 
 
 

, 
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𝝁𝑏0𝑡7
=

(

 
 
 
 
 

0.724578
0.11964
1.769563
0.890491
26.874672
375.19107
0.087744
0.308943 )

 
 
 
 
 

,𝝁𝑏0𝑡8
=

(

 
 
 
 
 

0.351352
0.232743
1.269895
0.880714
13.440228
180.251622
0.058416
0.301927 )

 
 
 
 
 

, 

Σ𝑏0𝑡1
=

[
 
 
 
 
 
 
 
0.470077 0.030326 0.01538 −0.000839 −1.788715 −3.362306 0.004137 0.006542
0.030326 1.024495 0.10691 −0.080508 −26.1847 −63.15604 −0.133632 0.08717
0.01538 0.10691 0.591652 −0.007423 −4.373796 −9.378982 −0.005658 0.013132
−0.000839 −0.080508 −0.007423 0.201564 2.168471 5.362986 0.014656 −0.007334
−1.788715 −26.1847 −4.373796 2.168471 19637.83385 2012.296147 3.13024 −2.735192
−3.362306 −63.15604 −9.378982 5.362986 2012.296147 38632.9553 8.299236 −6.23692
0.004137 −0.133632 −0.005658 0.014656 3.13024 8.299236 0.095552 −0.009852
0.006542 0.08717 0.013132 −0.007334 −2.735192 −6.23692 −0.009852 0.04876 ]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡2
=

[
 
 
 
 
 
 
 
0.072263 0.006937 0.07365 0.013591 −2.354338 4.170623 0.002615 0.016104
0.006937 0.045188 0.047527 0.020529 −7.288126 −1.587453 −0.009705 0.001171
0.07365 0.047527 0.335974 0.075867 −10.775862 −1.971751 −0.015717 0.034226
0.013591 0.020529 0.075867 0.085162 −1.180576 −3.060765 0.001064 0.020272
−2.354338 −7.288126 −10.775862 −1.180576 5467.129188 −246.039303 3.306684 0.779184
4.170623 −1.587453 −1.971751 −3.060765 −246.039303 4300.388471 2.505662 1.583032
0.002615 −0.009705 −0.015717 0.001064 3.306684 2.505662 0.021071 0.005633
0.016104 0.001171 0.034226 0.020272 0.779184 1.583032 0.005633 0.022648]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡3
=

[
 
 
 
 
 
 
 
0.037383 0.003005 0.051061 −0.004332 −1.358167 3.34181 −0.000601 0.008141
0.003005 0.004866 0.003408 −0.000921 −0.457757 0.361845 0.000576 0.002651
0.051061 0.003408 0.225259 −0.011444 −2.611116 10.304998 −0.000948 0.030167
−0.004332 −0.000921 −0.011444 0.005737 0.098032 −0.949549 −0.000254 −0.004976
−1.358167 −0.457757 −2.611116 0.098032 827.37626 424.425209 0.004262 −0.795169
3.34181 0.361845 10.304998 −0.949549 424.425209 4584.148371 −0.115933 4.005952
−0.000601 0.000576 −0.000948 −0.000254 0.004262 −0.115933 0.002392 0.000536
0.008141 0.002651 0.030167 −0.004976 −0.795169 4.005952 0.000536 0.022459 ]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡4
=

[
 
 
 
 
 
 
 
0.788242 −0.004324 −0.108718 0.045225 0.339893 39.711336 0.010881 0.026428
−0.004324 0.089064 0.002751 −0.002454 −0.040236 −1.780798 −0.000271 0.00161
−0.108718 0.002751 0.390896 −0.013224 −0.217046 −11.185861 −0.002584 −0.003293
0.045225 −0.002454 −0.013224 0.131988 0.068407 6.287739 0.001532 −0.000059
0.339893 −0.040236 −0.217046 0.068407 12099.13118 61.199138 −0.031422 −0.075383
39.711336 −1.780798 −11.185861 6.287739 61.199138 26993.77585 1.241066 0.412877
0.010881 −0.000271 −0.002584 0.001532 −0.031422 1.241066 0.043307 0.000524
0.026428 0.00161 −0.003293 −0.000059 −0.075383 0.412877 0.000524 0.027357 ]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡5
=

[
 
 
 
 
 
 
 
0.05015 −0.000254 0.054005 0.000911 2.696649 4.024001 0.006787 −0.002595
−0.000254 0.018934 0.001101 −0.012099 0.347071 −0.348715 −0.000789 0.003111
0.054005 0.001101 0.214719 −0.004808 2.010092 −2.175236 0.023097 −0.002001
0.000911 −0.012099 −0.004808 0.033486 0.011421 2.948939 −0.002454 −0.001247
2.696649 0.347071 2.010092 0.011421 2903.066467 3176.992931 −2.520256 0.536655
4.024001 −0.348715 −2.175236 2.948939 3176.992931 9730.161628 −5.606222 1.484464
0.006787 −0.000789 0.023097 −0.002454 −2.520256 −5.606222 0.026368 −0.006301
−0.002595 0.003111 −0.002001 −0.001247 0.536655 1.484464 −0.006301 0.011628 ]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡6
=

[
 
 
 
 
 
 
 
0.08749 0.011906 −0.000811 −0.00329 −0.076986 −10.444863 −0.007667 −0.017203
0.011906 0.046796 0.001682 −0.020556 0.345341 −3.085258 −0.009818 −0.024684
−0.000811 0.001682 0.228313 −0.002183 −2.660756 −48.869224 −0.031301 −0.041057
−0.00329 −0.020556 −0.002183 0.045324 −0.866336 −2.096832 0.003934 0.028717
−0.076986 0.345341 −2.660756 −0.866336 1042.016766 895.389527 0.912228 −1.182972
−10.444863 −3.085258 −48.869224 −2.096832 895.389527 22533.41507 16.079122 11.030961
−0.007667 −0.009818 −0.031301 0.003934 0.912228 16.079122 0.063271 −0.00428
−0.017203 −0.024684 −0.041057 0.028717 −1.182972 11.030961 −0.00428 0.089437 ]

 
 
 
 
 
 
 

, 

Σ𝑏0𝑡7
=

[
 
 
 
 
 
 
 
0.103643 0.000575 0.03882 0.003576 0.522412 −2.641135 −0.004543 −0.008206
0.000575 0.006058 −0.000963 −0.001929 0.080666 1.286855 −0.000994 0.002964
0.03882 −0.000963 0.144435 −0.004067 −2.386337 −5.945531 −0.001664 −0.002959
0.003576 −0.001929 −0.004067 0.010841 0.711684 −2.735277 0.000582 −0.00952
0.522412 0.080666 −2.386337 0.711684 813.171912 182.810906 −0.165175 −1.132824
−2.641135 1.286855 −5.945531 −2.735277 182.810906 15814.14312 −2.929442 6.698459
−0.004543 −0.000994 −0.001664 0.000582 −0.165175 −2.929442 0.004732 −0.000613
−0.008206 0.002964 −0.002959 −0.00952 −1.132824 6.698459 −0.000613 0.022201 ]

 
 
 
 
 
 
 

, 
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Σ𝑏0𝑡8
=

[
 
 
 
 
 
 
 
0.029698 0.006583 0.028265 −0.004902 −0.233809 −6.42322 −0.000149 0.005482
0.006583 0.024496 0.026048 −0.006826 −0.349284 −10.572607 0.00027 0.0104
0.028265 0.026048 0.162523 −0.016115 −1.295099 −25.574682 0.004545 0.023557
−0.004902 −0.006826 −0.016115 0.010818 0.204306 6.125879 −0.001879 −0.005342
−0.233809 −0.349284 −1.295099 0.204306 234.158726 376.139257 −0.081351 −0.589591
−6.42322 −10.572607 −25.574682 6.125879 376.139257 20345.07366 −1.511536 −6.428036
−0.000149 0.00027 0.004545 −0.001879 −0.081351 −1.511536 0.007433 0.001053
0.005482 0.0104 0.023557 −0.005342 −0.589591 −6.428036 0.001053 0.018897 ]

 
 
 
 
 
 
 

. 

The distribution  

𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝑏1
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖

, 𝝁𝑏1𝑡𝑖
, Σ𝑏1𝑡 𝑖

}
𝑖=1

9
}) 

consists of nine components, where  

𝜋𝑏1𝑡1
= 0.156672, 𝜋𝑏1𝑡2

= 0.019726, 𝜋𝑏1𝑡3
= 0.072743, 

𝜋𝑏1𝑡4
= 0.135269, 𝜋𝑏1𝑡5

= 0.099846, 𝜋𝑏1𝑡6
= 0.058998, 

𝜋𝑏1𝑡7
= 0.190388, 𝜋𝑏1𝑡8

= 0.128558, 𝜋𝑏1𝑡9
= 0.137801, 

𝝁𝑏1𝑡1
=

(

 
 
 
 
 

0.531349
0.062987
0.96035
0.997117
149.733387
212.696934
0.037172
0.108445 )

 
 
 
 
 

,𝝁𝑏1𝑡2
=

(

 
 
 
 
 

1.175641
0.244669
2.065949
0.790987
102.338776
121.092573
−0.119136
0.327292 )

 
 
 
 
 

,𝝁𝑏1𝑡3
=

(

 
 
 
 
 

1.035485
0.052906
1.092769
0.848391
403.358153
403.85568
−0.111523
0.200388 )

 
 
 
 
 

, 

𝝁𝑏1𝑡4
=

(

 
 
 
 
 

0.4545
0.26997
1.397835
0.887294
19.009587
32.039094
−0.01854
0.373948 )

 
 
 
 
 

,𝝁𝑏1𝑡5
=

(

 
 
 
 
 

1.991799
0.320799
0.919077
0.957298
93.340093
258.118119
0.141691
0.23637 )

 
 
 
 
 

,𝝁𝑏1𝑡6
=

(

 
 
 
 
 

0.341263
0.213457
1.495354
0.72658
136.29799
110.440643
0.237027
0.370619 )

 
 
 
 
 

, 

𝝁𝑏1𝑡7
=

(

 
 
 
 
 

0.812829
0.129887
1.738544
0.957306
61.578686
67.420578
0.044165
0.208093 )

 
 
 
 
 

, 𝝁𝑏1𝑡8
=

(

 
 
 
 
 

0.524626
0.240273
1.520805
0.962604
30.538918
235.221127
0.029893
0.206634 )

 
 
 
 
 

, 𝝁𝑏1𝑡9
=

(

 
 
 
 
 

0.392986
0.115946
0.965133
0.951238
53.741029
354.763044
0.040946
0.269591 )

 
 
 
 
 

, 

Σ𝑏1𝑡1
=

[
 
 
 
 
 
 
 
0.056819 0.001339 0.056484 −0.00006 3.295203 6.097452 0.00226 0.001064
0.001339 0.00397 0.000166 −0.000213 0.882965 1.171459 −0.000133 0.000239
0.056484 0.000166 0.136244 −0.000676 14.506152 18.095003 0.001689 0.001791
−0.00006 −0.000213 −0.000676 0.003096 −0.211893 −0.217394 0.000104 −0.000257
3.295203 0.882965 14.506152 −0.211893 10421.76125 11033.66395 0.048368 0.715592
6.097452 1.171459 18.095003 −0.217394 11033.66395 17548.93695 1.217911 0.907724
0.00226 −0.000133 0.001689 0.000104 0.048368 1.217911 0.001771 −0.000029
0.001064 0.000239 0.001791 −0.000257 0.715592 0.907724 −0.000029 0.001286 ]

 
 
 
 
 
 
 

, 
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Σ𝑏1𝑡2
=

[
 
 
 
 
 
 
 
0.102164 −0.009119 −0.010391 0.004278 5.364341 3.196266 −0.004757 −0.008608
−0.009119 0.05058 0.023993 −0.013739 −13.413692 −11.826747 0.006105 0.011531
−0.010391 0.023993 0.187543 −0.028823 −17.468287 −21.43878 0.005016 0.000595
0.004278 −0.013739 −0.028823 0.043608 6.21774 7.349136 0.002618 −0.000466
5.364341 −13.413692 −17.468287 6.21774 9767.605996 5924.610676 −4.732457 −5.688414
3.196266 −11.826747 −21.43878 7.349136 5924.610676 10778.11817 −2.399922 −0.205467
−0.004757 0.006105 0.005016 0.002618 −4.732457 −2.399922 0.015423 0.006985
−0.008608 0.011531 0.000595 −0.000466 −5.688414 −0.205467 0.006985 0.033455 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡3
=

[
 
 
 
 
 
 
 
0.025078 −0.000713 0.011014 −0.00129 6.33088 6.157416 0.000949 0.002792
−0.000713 0.004548 −0.000863 −0.000443 −0.789698 −0.670821 −0.000018 −0.000073
0.011014 −0.000863 0.130063 0.023702 35.146217 35.392805 0.005348 0.004087
−0.00129 −0.000443 0.023702 0.037493 12.170697 12.074992 0.002237 −0.007381
6.33088 −0.789698 35.146217 12.170697 18431.43148 17689.44823 2.904921 −0.12403
6.157416 −0.670821 35.392805 12.074992 17689.44823 18651.29928 2.922306 −0.105606
0.000949 −0.000018 0.005348 0.002237 2.904921 2.922306 0.002942 −0.000291
0.002792 −0.000073 0.004087 −0.007381 −0.12403 −0.105606 −0.000291 0.009009 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡4
=

[
 
 
 
 
 
 
 
0.027856 0.002011 0.016428 0.002737 −0.00266 2.503709 0.000441 −0.005378
0.002011 0.018646 0.008452 −0.005646 −0.063569 −1.892322 −0.001545 0.003105
0.016428 0.008452 0.138537 −0.001788 −2.278508 2.114264 −0.000563 −0.001006
0.002737 −0.005646 −0.001788 0.010203 −0.104676 1.373413 −0.000648 −0.004474
−0.00266 −0.063569 −2.278508 −0.104676 660.529546 −57.757822 0.121573 0.091787
2.503709 −1.892322 2.114264 1.373413 −57.757822 2025.991935 0.110432 −1.879999
0.000441 −0.001545 −0.000563 −0.000648 0.121573 0.110432 0.004799 0.002917
−0.005378 0.003105 −0.001006 −0.004474 0.091787 −1.879999 0.002917 0.023277 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡5
=

[
 
 
 
 
 
 
 
0.576236 0.041006 −0.017818 −0.00066 7.162318 −12.984813 0.017195 0.016215
0.041006 0.023827 −0.00289 −0.002692 2.613603 4.141043 −0.000902 0.011211
−0.017818 −0.00289 0.372494 −0.006267 −8.581798 35.104199 −0.026309 0.008586
−0.00066 −0.002692 −0.006267 0.007444 −0.200978 −0.875167 0.000467 −0.00449
7.162318 2.613603 −8.581798 −0.200978 2353.622944 1410.881601 0.544352 1.272265
−12.984813 4.141043 35.104199 −0.875167 1410.881601 22043.57451 −5.086068 0.373846
0.017195 −0.000902 −0.026309 0.000467 0.544352 −5.086068 0.006411 −0.000196
0.016215 0.011211 0.008586 −0.00449 1.272265 0.373846 −0.000196 0.016707 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡6
=

[
 
 
 
 
 
 
 
0.031894 −0.001529 0.000367 0.003743 −3.075993 0.335594 0.000759 −0.001343
−0.001529 0.028139 0.004414 −0.002899 1.664341 −1.231822 −0.007447 0.001472
0.000367 0.004414 0.106469 −0.015663 3.330759 4.885737 0.003319 −0.017893
0.003743 −0.002899 −0.015663 0.039741 −2.495571 −3.166351 −0.006042 0.002957
−3.075993 1.664341 3.330759 −2.495571 7036.114195 1002.593893 −0.50677 −3.987955
0.335594 −1.231822 4.885737 −3.166351 1002.593893 4646.507489 0.487152 −0.059002
0.000759 −0.007447 0.003319 −0.006042 −0.50677 0.487152 0.010499 −0.002454
−0.001343 0.001472 −0.017893 0.002957 −3.987955 −0.059002 −0.002454 0.033084 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡7
=

[
 
 
 
 
 
 
 
0.1136 0.006478 0.153739 −0.001063 −5.029185 −2.620495 −0.013922 0.000213
0.006478 0.004869 0.014678 −0.00127 −0.700464 −0.31756 −0.001127 0.001202
0.153739 0.014678 0.364424 −0.003764 −12.267554 −4.997879 −0.023084 0.003291
−0.001063 −0.00127 −0.003764 0.004919 0.243105 0.541861 0.000334 −0.002951
−5.029185 −0.700464 −12.267554 0.243105 2014.061267 1141.233045 0.053791 −0.006733
−2.620495 −0.31756 −4.997879 0.541861 1141.233045 2010.213379 0.019545 −0.868379
−0.013922 −0.001127 −0.023084 0.000334 0.053791 0.019545 0.007096 0.000449
0.000213 0.001202 0.003291 −0.002951 −0.006733 −0.868379 0.000449 0.01016 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡8
=

[
 
 
 
 
 
 
 
0.083004 −0.014074 0.140211 0.003067 −2.193768 14.028347 0.001395 −0.000511
−0.014074 0.034435 −0.04819 −0.004345 1.751637 1.409391 −0.003278 0.007243
0.140211 −0.04819 0.530963 0.005108 −4.657572 24.087814 0.004415 −0.006635
0.003067 −0.004345 0.005108 0.005294 −0.469579 1.054758 0.000821 −0.00165
−2.193768 1.751637 −4.657572 −0.469579 1048.74472 −622.800981 −0.421949 0.192006
14.028347 1.409391 24.087814 1.054758 −622.800981 7800.779093 0.71566 0.89297
0.001395 −0.003278 0.004415 0.000821 −0.421949 0.71566 0.004044 −0.001062
−0.000511 0.007243 −0.006635 −0.00165 0.192006 0.89297 −0.001062 0.006358 ]

 
 
 
 
 
 
 

, 

Σ𝑏1𝑡9
=

[
 
 
 
 
 
 
 
0.024252 0.001969 0.034616 −0.001227 −4.789066 −8.251884 −0.000093 0.007008
0.001969 0.007547 0.005232 −0.002424 −0.578334 −2.046382 0.000561 0.004941
0.034616 0.005232 0.131013 −0.006996 −10.82109 −24.309198 0.00016 0.027881
−0.001227 −0.002424 −0.006996 0.006598 0.328813 1.912666 −0.000525 −0.006272
−4.789066 −0.578334 −10.82109 0.328813 3102.52963 4344.375089 −0.129613 −3.034024
−8.251884 −2.046382 −24.309198 1.912666 4344.375089 11735.66909 −0.546143 −10.419821
−0.000093 0.000561 0.00016 −0.000525 −0.129613 −0.546143 0.002941 0.001402
0.007008 0.004941 0.027881 −0.006272 −3.034024 −10.419821 0.001402 0.024758 ]

 
 
 
 
 
 
 

. 

The distribution  
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𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹32
𝑡 , 𝐹34

𝑡 , 𝐹52
𝑡 , 𝐹42

𝑡 , 𝐹12
𝑡 , 𝐹66

𝑡 |𝑏2
𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹66𝑡 |𝑏2𝑡 = {{𝜋𝑏2𝑡 𝑖

, 𝝁𝑏2𝑡𝑖
, Σ𝑏2𝑡 𝑖

}
𝑖=1

9
}) 

consists of nine components, where  

𝜋𝑏2𝑡1
= 0.067276, 𝜋𝑏2𝑡2

= 0.007735, 𝜋𝑏2𝑡3
= 0.307573, 

𝜋𝑏2𝑡4
= 0.203191, 𝜋𝑏2𝑡5

= 0.074633, 𝜋𝑏2𝑡6
= 0.036256, 

𝜋𝑏2𝑡7
= 0.22387, 𝜋𝑏2𝑡8

= 0.019627, 𝜋𝑏2𝑡9
= 0.05984, 

𝝁𝑏2𝑡1
=

(

 
 
 
 
 

1.143574
1.126899
1.92779
0.066001
72.512257
172.925427
−0.300664
0.064414 )

 
 
 
 
 

,𝝁𝑏2𝑡2
=

(

 
 
 
 
 

1.080309
1.459061
1.409659
0.334308
315.550838
353.250564
−0.183936
0.207741 )

 
 
 
 
 

,𝝁𝑏2𝑡3
=

(

 
 
 
 
 

1.311743
0.570771
1.701795
0.073878
240.312532
250.997408
−0.366386
0.102953 )

 
 
 
 
 

, 

𝝁𝑏2𝑡4
=

(

 
 
 
 
 

0.30508
0.348043
2.307847
0.243704
20.424459
184.685731
−0.282841
0.243462 )

 
 
 
 
 

,𝝁𝑏2𝑡5
=

(

 
 
 
 
 

2.040673
0.356006
2.154744
0.061102
169.494996
355.969087
−0.648605
0.091486 )

 
 
 
 
 

,𝝁𝑏2𝑡6
=

(

 
 
 
 
 

0.966862
0.522019
1.750517
0.401631
201.574732
193.721281
−0.244567
0.346173 )

 
 
 
 
 

, 

𝝁𝑏2𝑡7
=

(

 
 
 
 
 

0.235882
0.256663
2.509579
0.095554
181.430424
199.345761
−0.371175
0.134331 )

 
 
 
 
 

,𝝁𝑏2𝑡8
=

(

 
 
 
 
 

1.711117
1.269749
1.023775
0.315406
179.520729
455.256728
−0.134568
0.125366 )

 
 
 
 
 

,𝝁𝑏2𝑡9
=

(

 
 
 
 
 

1.102161
0.832099
1.910687
0.309344
37.187408
421.684837
−0.287136
0.262421 )

 
 
 
 
 

, 

Σ𝑏2𝑡1
=

[
 
 
 
 
 
 
 
0.244974 0.076746 −0.083684 −0.004575 9.564033 3.939812 0.010596 −0.001025
0.076746 0.524549 −0.218686 −0.019823 4.428636 −12.205394 −0.012368 −0.006504
−0.083684 −0.218686 0.22657 −0.000092 −5.944544 1.673146 0.002963 −0.003271
−0.004575 −0.019823 −0.000092 0.015938 −1.685704 −4.485135 −0.00363 0.006374
9.564033 4.428636 −5.944544 −1.685704 2744.339081 3442.092339 3.558765 −1.543902
3.939812 −12.205394 1.673146 −4.485135 3442.092339 12161.96809 8.968906 −4.267216
0.010596 −0.012368 0.002963 −0.00363 3.558765 8.968906 0.014835 −0.003615
−0.001025 −0.006504 −0.003271 0.006374 −1.543902 −4.267216 −0.003615 0.00732 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡2
=

[
 
 
 
 
 
 
 
0.263752 0.069767 0.058764 −0.052578 −1.586263 9.251698 −0.022871 0.011718
0.069767 0.221997 0.059279 −0.037071 9.639574 1.887854 −0.009474 0.023304
0.058764 0.059279 0.296728 −0.025647 −9.109592 −0.507487 −0.021634 0.016959
−0.052578 −0.037071 −0.025647 0.085578 −1.603196 −4.026954 0.009384 −0.002153
−1.586263 9.639574 −9.109592 −1.603196 8784.225478 541.516799 1.570068 −0.910588
9.251698 1.887854 −0.507487 −4.026954 541.516799 12927.7837 −3.927667 −2.105253
−0.022871 −0.009474 −0.021634 0.009384 1.570068 −3.927667 0.033562 −0.000511
0.011718 0.023304 0.016959 −0.002153 −0.910588 −2.105253 −0.000511 0.02185 ]

 
 
 
 
 
 
 

, 
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Σ𝑏2𝑡3
=

[
 
 
 
 
 
 
 
0.418361 0.033713 0.080007 0.012587 −3.648415 −2.718459 0.011842 0.020342
0.033713 0.141008 −0.09814 0.009378 −17.262276 −15.104953 0.01056 0.01312
0.080007 −0.09814 0.313055 0.005183 3.824454 1.458809 −0.001805 0.008165
0.012587 0.009378 0.005183 0.009222 −4.358401 −4.001148 0.005358 0.008849
−3.648415 −17.262276 3.824454 −4.358401 24885.53578 24150.97254 −2.03519 −5.987549
−2.718459 −15.104953 1.458809 −4.001148 24150.97254 23928.64268 −1.850234 −5.548977
0.011842 0.01056 −0.001805 0.005358 −2.03519 −1.850234 0.013869 0.006724
0.020342 0.01312 0.008165 0.008849 −5.987549 −5.548977 0.006724 0.01351 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡4
=

[
 
 
 
 
 
 
 
0.039018 0.010394 0.00457 0.007233 −0.326393 −0.890157 −0.003492 0.005941
0.010394 0.022933 −0.003439 0.006715 −0.796399 −3.325187 0.001621 0.006654
0.00457 −0.003439 0.096919 −0.006412 0.181232 −19.438853 −0.01129 0.003816
0.007233 0.006715 −0.006412 0.037144 −1.625664 −0.649556 0.013483 0.025403
−0.326393 −0.796399 0.181232 −1.625664 500.200481 587.718471 −0.781269 −1.29371
−0.890157 −3.325187 −19.438853 −0.649556 587.718471 20687.13873 2.569042 −4.207991
−0.003492 0.001621 −0.01129 0.013483 −0.781269 2.569042 0.01453 0.010261
0.005941 0.006654 0.003816 0.025403 −1.29371 −4.207991 0.010261 0.025499 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡5
=

[
 
 
 
 
 
 
 
0.164318 0.014037 0.014715 −0.003483 −6.364108 −8.42431 −0.003966 −0.000033
0.014037 0.017615 0.005771 0.003085 −2.467651 0.113384 0.001146 0.003544
0.014715 0.005771 0.087544 0.002581 −5.492691 19.842419 0.001343 −0.000722
−0.003483 0.003085 0.002581 0.010905 −0.745483 1.723394 0.002281 0.003208
−6.364108 −2.467651 −5.492691 −0.745483 2731.017297 −2042.386627 −0.603838 −0.116231
−8.42431 0.113384 19.842419 1.723394 −2042.386627 22301.62858 3.431961 0.07429
−0.003966 0.001146 0.001343 0.002281 −0.603838 3.431961 0.004566 0.000949
−0.000033 0.003544 −0.000722 0.003208 −0.116231 0.07429 0.000949 0.005436 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡6
=

[
 
 
 
 
 
 
 
0.20265 0.067243 0.084273 0.033893 −18.023192 −4.411517 0.026644 0.026694
0.067243 0.061532 −0.002548 0.019617 −18.553826 −13.553926 0.009614 0.010794
0.084273 −0.002548 0.252122 0.002979 25.075645 33.311025 0.023981 0.024499
0.033893 0.019617 0.002979 0.035867 −5.651925 −3.190402 0.009016 0.004185
−18.023192 −18.553826 25.075645 −5.651925 30229.8615 30431.62136 2.668364 −4.10872
−4.411517 −13.553926 33.311025 −3.190402 30431.62136 36381.18446 5.415853 −2.190039
0.026644 0.009614 0.023981 0.009016 2.668364 5.415853 0.015934 0.004168
0.026694 0.010794 0.024499 0.004185 −4.10872 −2.190039 0.004168 0.016814 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡7
=

[
 
 
 
 
 
 
 
0.024672 0.002294 −0.012302 0.001199 −2.088621 −4.571956 −0.001988 0.000989
0.002294 0.012939 0.005313 0.004626 −2.813629 −3.470453 0.000189 0.005569
−0.012302 0.005313 0.19192 0.002976 −23.208619 −19.773205 −0.002349 0.009155
0.001199 0.004626 0.002976 0.008665 −1.120167 −0.47307 0.001998 0.006088
−2.088621 −2.813629 −23.208619 −1.120167 15400.38456 16372.04883 4.624858 −2.796614
−4.571956 −3.470453 −19.773205 −0.47307 16372.04883 21762.74189 6.267205 −1.000399
−0.001988 0.000189 −0.002349 0.001998 4.624858 6.267205 0.005925 0.002111
0.000989 0.005569 0.009155 0.006088 −2.796614 −1.000399 0.002111 0.011035 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡8
=

[
 
 
 
 
 
 
 
0.712361 0.117471 0.549562 0.014822 −9.850269 −7.108881 0.004807 0.035335
0.117471 0.334022 0.007695 0.057106 3.216467 5.575115 0.013442 0.001615
0.549562 0.007695 0.828977 0.00265 −19.365231 −20.495042 0.002329 0.044243
0.014822 0.057106 0.00265 0.119627 −0.739126 −1.525965 0.011726 0.006201
−9.850269 3.216467 −19.365231 −0.739126 2911.463402 851.047054 0.040331 −0.921461
−7.108881 5.575115 −20.495042 −1.525965 851.047054 5445.499242 −0.093542 −1.146658
0.004807 0.013442 0.002329 0.011726 0.040331 −0.093542 0.010161 0.00183
0.035335 0.001615 0.044243 0.006201 −0.921461 −1.146658 0.00183 0.01074 ]

 
 
 
 
 
 
 

, 

Σ𝑏2𝑡9
=

[
 
 
 
 
 
 
 
0.386256 0.120258 −0.166508 0.005539 −5.083699 33.628444 0.042788 −0.040887
0.120258 0.180782 −0.068075 0.033591 −3.696982 12.271952 0.036015 0.026813
−0.166508 −0.068075 0.408102 −0.006782 2.764152 −32.179256 −0.033967 0.03406
0.005539 0.033591 −0.006782 0.042906 0.417015 2.921825 0.018238 0.023918
−5.083699 −3.696982 2.764152 0.417015 1425.08446 −281.190456 −0.57824 1.987535
33.628444 12.271952 −32.179256 2.921825 −281.190456 7076.258526 6.074098 −2.594563
0.042788 0.036015 −0.033967 0.018238 −0.57824 6.074098 0.022253 0.011426
−0.040887 0.026813 0.03406 0.023918 1.987535 −2.594563 0.011426 0.044985 ]

 
 
 
 
 
 
 

. 

Distribution 𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝐵𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝐵𝑡) 

The distribution 𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝐵𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝐵𝑡) over a two-dimensional vector of continuous variables 

(𝐹10, 𝐹38) at time slice 𝑡 ≥ 1 is a collection of bivariate Gaussian mixture distributions with a bivariate 

GMM  

𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝑏𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡𝑖𝒩(𝝁𝑏𝑡 𝑖, Σ𝑏𝑡 𝑖)

𝑛𝑏

𝑖=1
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composed of 𝑛𝑏 components for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝐵𝑡 =

{𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏0𝑡 , 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏1𝑡 , 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝑏0
𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖

, 𝝁𝑏0𝑡𝑖
, Σ𝑏0𝑡 𝑖

}
𝑖=1

5
}) 

consists of five components, where  

𝜋𝑏0𝑡1
= 0.702216, 𝜋𝑏0𝑡2

= 0.026314, 𝜋𝑏0𝑡3
= 0.006789, 

𝜋𝑏0𝑡4
= 0.167489, 𝜋𝑏0𝑡5

= 0.097193, 

𝝁𝑏0𝑡1
= (

0.085547
9.891586

) , 𝝁𝑏0𝑡2
= (

0.069626
161.415727

) , 𝝁𝑏0𝑡3
= (

0.815368
11.827344

), 

𝝁𝑏0𝑡4
= (

0.06322
44.903817

) , 𝝁𝑏0𝑡5
= (

0.197613
20.662485

), 

 Σ𝑏0𝑡1
= [

0.001142 −0.024045
−0.024045 68.371946

] , Σ𝑏0𝑡2
= [

0.001024 −0.141281
−0.141281 1977.990171

], 

 Σ𝑏0𝑡3
= [

0.093905 −1.097098
−1.097098 2560.323888

] , Σ𝑏0𝑡4
= [
0.000563 0.002292
0.002292 665.55367

], 

  Σ𝑏0𝑡5
= [

0.007316 −0.679912
−0.679912 493.337061

]. 

The distribution  

𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝑏1
𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖

, 𝝁𝑏1𝑡𝑖
, Σ𝑏1𝑡 𝑖

}
𝑖=1

8
}) 

consists of eight components, where  

𝜋𝑏1𝑡1
= 0.196181, 𝜋𝑏1𝑡2

= 0.089549, 𝜋𝑏1𝑡3
= 0.473485, 

𝜋𝑏1𝑡4
= 0.004462, 𝜋𝑏1𝑡5

= 0.026928, 𝜋𝑏1𝑡6
= 0.122865, 

𝜋𝑏1𝑡7
= 0.057238, 𝜋𝑏1𝑡8

= 0.02929, 

𝝁𝑏1𝑡1
= (

0.079769
102.221613

) , 𝝁𝑏1𝑡2
= (

0.069395
372.770913

) , 𝝁𝑏1𝑡3
= (

0.077586
14.049404

), 

𝝁𝑏1𝑡4
= (

0.339149
311.250659

) , 𝝁𝑏1𝑡5
= (

0.637417
54.205471

) , 𝝁𝑏1𝑡6
= (

0.244908
41.0763

), 

𝝁𝑏1𝑡7
= (

0.160345
100.37751

) , 𝝁𝑏1𝑡8
= (

0.139966
311.404522

), 

 Σ𝑏1𝑡1
= [
0.000784 0.308564
0.308564 2521.618852

] , Σ𝑏1𝑡2
= [
0.000628 0.247296
0.247296 16717.13608

],  

Σ𝑏1𝑡3
= [

0.000706 −0.025232
−0.025232 158.456696

] , Σ𝑏1𝑡4
= [
0.016983 5.681652
5.681652 20271.07123

], 

  Σ𝑏1𝑡5
= [

0.070856 −6.648618
−6.648618 2768.591235

] , Σ𝑏1𝑡6
= [

0.010581 −0.097943
−0.097943 1053.011972

], 
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Σ𝑏1𝑡7
= [

0.003163 −0.110589
−0.110589 3505.922819

] , Σ𝑏1𝑡8
= [

0.002741 −0.351155
−0.351155 18134.75103

]. 

The distribution  

𝑝 (𝐹10
𝑡 , 𝐹38

𝑡 |𝑏2
𝑡 ∶ 𝜽𝐹10𝑡 ,𝐹38𝑡 |𝑏2𝑡 = {{𝜋𝑏2𝑡 𝑖

, 𝝁𝑏2𝑡𝑖
, Σ𝑏2𝑡 𝑖

}
𝑖=1

9
}) 

consists of nine components, where  

𝜋𝑏2𝑡1
= 0.198117, 𝜋𝑏2𝑡2

= 0.063268, 𝜋𝑏2𝑡3
= 0.06613, 

𝜋𝑏2𝑡4
= 0.153222, 𝜋𝑏2𝑡5

= 0.129291, 𝜋𝑏2𝑡6
= 0.126657, 

𝜋𝑏2𝑡7
= 0.007314, 𝜋𝑏2𝑡8

= 0.113982, 𝜋𝑏2𝑡9
= 0.143019, 

𝝁𝑏2𝑡1
= (

0.088937
18.554789

) , 𝝁𝑏2𝑡2
= (

0.347218
316.04149

) , 𝝁𝑏2𝑡3
= (

0.481193
111.63058

), 

𝝁𝑏2𝑡4
= (

0.247392
112.678493

) , 𝝁𝑏2𝑡5
= (

0.060801
77.921397

) , 𝝁𝑏2𝑡6
= (

0.183969
440.732399

), 

𝝁𝑏2𝑡7
= (

0.614764
294.833974

) , 𝝁𝑏2𝑡8
= (

0.115587
232.69083

) , 𝝁𝑏2𝑡9
= (

0.251185
27.73391

), 

 Σ𝑏2𝑡1
= [

0.001332 −0.117595
−0.117595 312.056363

] , Σ𝑏2𝑡2
= [
0.017425 1.898672
1.898672 4469.572513

],  

Σ𝑏2𝑡3
= [

0.037758 −1.441373
−1.441373 2339.29167

] , Σ𝑏2𝑡4
= [
0.008431 1.009807
1.009807 1839.110608

], 

  Σ𝑏2𝑡5
= [

0.000596 −0.13177
−0.13177 1751.810429

] , Σ𝑏2𝑡6
= [
0.006906 0.343896
0.343896 4421.182612

], 

Σ𝑏2𝑡7
= [
0.050555 8.340104
8.340104 7895.072264

] , Σ𝑏2𝑡8
= [
0.003726 0.900001
0.900001 2810.288139

],  

Σ𝑏2𝑡9
= [
0.009619 0.340039
0.340039 522.947477

]. 

Distribution 𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝐵𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝐵𝑡) 

The distribution 𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝐵𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝐵𝑡)  over a three-dimensional vector of continuous 

variables (𝐹30, 𝐹36, 𝐹60)  at time slice 𝑡 ≥ 1  is a collection of multivariate Gaussian mixture 

distributions with a multivariate GMM  

𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝑏𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏𝑡) =∑𝜋𝑏𝑡 𝑖𝒩(𝝁𝑏𝑡 𝑖, Σ𝑏𝑡 𝑖)

𝑛𝑏

𝑖=1

 

composed of 𝑛𝑏  components for each 𝑏𝑡 ∈ Val(𝐵) , parameterized with MAP parameters 

𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝐵𝑡 = {𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏0𝑡 , 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏1𝑡 , 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏2𝑡}. 

The distribution  

𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝑏0

𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏0𝑡 = {{𝜋𝑏0𝑡 𝑖
, 𝝁𝑏0𝑡𝑖

, Σ𝑏0𝑡 𝑖
}
𝑖=1

2
}) 

consists of two components, where  
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𝜋𝑏0𝑡1
= 0.962171, 𝜋𝑏0𝑡2

= 0.037829, 

𝝁𝑏0𝑡1
= (

0.113466
0.043239
0.004567

) , 𝝁𝑏0𝑡2
= (

0.182941
0.119592
0.089998

), 

 Σ𝑏0𝑡1
= [

0.11748 0.000582 0.000079
0.000582 0.001056 0.000006
0.000079 0.000006 0.000391

] , Σ𝑏0𝑡2
= [

2.833012 0.004207 −0.001345
0.004207 0.004247 −0.002107
−0.001345 −0.002107 0.009124

]. 

The distribution  

𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝑏1

𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏1𝑡 = {{𝜋𝑏1𝑡 𝑖
, 𝝁𝑏1𝑡𝑖

, Σ𝑏1𝑡 𝑖
}
𝑖=1

3
}) 

consists of three components, where  

𝜋𝑏1𝑡1
= 0.001726, 𝜋𝑏1𝑡2

= 0.037256, 𝜋𝑏1𝑡3
= 0.961018, 

𝝁𝑏1𝑡1
= (

333.241715
0.132911
0.08516

) , 𝝁𝑏1𝑡2
= (

0.095118
0.134383
0.075553

) , 𝝁𝑏1𝑡3
= (

0.067324
0.024611
0.000756

), 

 Σ𝑏1𝑡1
= [
12306.19648 3.352828 −4.678675
3.352828 0.002304 −0.001277
−4.678675 −0.001277 0.111274

] , Σ𝑏1𝑡2
= [
3.094262 0.000311 0.000781
0.000311 0.002771 −0.002759
0.000781 −0.002759 0.016524

],  

Σ𝑏1𝑡3
= [
0.123253 0.000681 0.000039
0.000681 0.000694 0.000008
0.000039 0.000008 0.000234

]. 

The distribution  

𝑝 (𝐹30
𝑡 , 𝐹36

𝑡 , 𝐹60
𝑡 |𝑏2

𝑡 ∶ 𝜽𝐹30𝑡 ,…,𝐹60𝑡 |𝑏2𝑡 = {{𝜋𝑏2𝑡 𝑖
, 𝝁𝑏2𝑡𝑖

, Σ𝑏2𝑡 𝑖
}
𝑖=1

2
}) 

consists of two components, where  

𝜋𝑏2𝑡1
= 0.974088, 𝜋𝑏2𝑡2

= 0.25912, 

𝝁𝑏2𝑡1
= (

0.062702
0.046683
0.728183

) , 𝝁𝑏2𝑡2
= (

0.156219
0.197705
0.461905

), 

 Σ𝑏2𝑡1
= [

0.122652 0.001465 −0.00534
0.001465 0.001425 −0.003937
−0.00534 −0.003937 0.046984

] , Σ𝑏2𝑡2
= [

4.483815 −0.000912 −0.004391
−0.000912 0.001365 −0.004217
−0.004391 −0.004217 0.126785

]. 

Distribution 𝑝 (𝐹11
𝑡 |𝐵𝑡, 𝐹2

𝑡 ∶ 𝜽𝐹11𝑡 |𝐵𝑡,𝐹2𝑡) 

The distribution 𝑝 (𝐹11
𝑡 |𝐵𝑡 , 𝐹2

𝑡 ∶ 𝜽𝐹11𝑡 |𝐵𝑡,𝐹2𝑡) over the continuous variable 𝐹11  at time slice 𝑡 ≥ 1 is a 

collection of Gaussian mixture distributions with a GMM  

𝑝 (𝐹11
𝑡 |𝑏𝑡, 𝑓2

t ∶ 𝜽𝐹45𝑡 |𝑏𝑡,𝑓2𝑡) = ∑𝜋𝑏𝑡 𝑖𝒩(𝜇𝑏𝑡,𝑓𝑡𝑖
, 𝜎𝑏𝑡,𝑓𝑡
2

𝑖
)

𝑛𝑏,𝑓

𝑖=1
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composed of 𝑛𝑏,𝑓  components for each {𝑏𝑡, 𝑓2
𝑡} ∈ Val(𝐵) × Val(𝐹2) , parameterized with MAP 

parameters 𝜽𝐹11𝑡 |𝐵𝑡,𝐹2𝑡 = {𝜽𝐹11𝑡 |𝑏0𝑡 ,𝑓0𝑡 , 𝜽𝐹11𝑡 |𝑏1𝑡 ,𝑓0𝑡 , 𝜽𝐹11𝑡 |𝑏2𝑡 ,𝑓0𝑡 , 𝜽𝐹11𝑡 |𝑏0𝑡 ,𝑓1𝑡 , 𝜽𝐹11𝑡 |𝑏1𝑡 ,𝑓1𝑡 , 𝜽𝐹11𝑡 |𝑏2𝑡 ,𝑓1𝑡}. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏0

𝑡 , 𝑓2
𝑡
0
∶ 𝜽𝐹11𝑡 |𝑏0𝑡 ,𝑓0𝑡 = {{𝜋𝑏0𝑡 ,𝑓0𝑡𝑖

, 𝜇𝑏0𝑡 ,𝑓0𝑡𝑖
, 𝜎
𝑏0
𝑡 ,𝑓0

𝑡
2

𝑖
}
𝑖=1

1

}) 

consists of a single component, where  

𝜋𝑏0𝑡 ,𝑓0𝑡1
= 1, 𝜇𝑏0𝑡 ,𝑓0𝑡1

= −0.07166, 𝜎
𝑏0
𝑡 ,𝑓0

𝑡
2

1
= 1.531553. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏1

𝑡, 𝑓2
𝑡
0
∶ 𝜽𝐹11𝑡 |𝑏1𝑡 ,𝑓0𝑡 = {{𝜋𝑏1𝑡 ,𝑓0𝑡𝑖

, 𝜇𝑏1𝑡 ,𝑓0𝑡𝑖
, 𝜎
𝑏1
𝑡 ,𝑓0

𝑡
2

𝑖
}
𝑖=1

1

}) 

consists of a single component, where  

𝜋𝑏1𝑡 ,𝑓0𝑡1
= 1, 𝜇𝑏1𝑡 ,𝑓0𝑡1

= −0.07166, 𝜎
𝑏1
𝑡 ,𝑓0

𝑡
2

1
= 1.531553. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏2

𝑡 , 𝑓2
𝑡
0
∶ 𝜽𝐹11𝑡 |𝑏2𝑡 ,𝑓0𝑡 = {{𝜋𝑏2𝑡 ,𝑓0𝑡𝑖

, 𝜇𝑏2𝑡 ,𝑓0𝑡𝑖
, 𝜎
𝑏2
𝑡 ,𝑓0

𝑡
2

𝑖
}
𝑖=1

1

}) 

consists of a single component, where  

𝜋𝑏0𝑡 ,𝑓0𝑡1
= 1, 𝜇𝑏0𝑡 ,𝑓0𝑡1

= −0.07166, 𝜎
𝑏0
𝑡 ,𝑓0

𝑡
2

1
= 1.531553. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏0

𝑡 , 𝑓2
𝑡
1
∶ 𝜽𝐹11𝑡 |𝑏0𝑡 ,𝑓1𝑡 = {{𝜋𝑏0𝑡 ,𝑓1𝑡𝑖

, 𝜇𝑏0𝑡 ,𝑓1𝑡𝑖
, 𝜎
𝑏0
𝑡 ,𝑓1

𝑡
2

𝑖
}
𝑖=1

3

}) 

consists of a three component, where  

𝜋𝑏0𝑡 ,𝑓1𝑡1
= 0.09059, 𝜋𝑏0𝑡 ,𝑓1𝑡2

= 0.81067, 𝜋𝑏0𝑡 ,𝑓1𝑡3
= 0.098712, 

 𝜇𝑏0𝑡 ,𝑓1𝑡1
= 0.0188, 𝜇𝑏0𝑡 ,𝑓1𝑡2

= 0.076347, 𝜇𝑏0𝑡 ,𝑓1𝑡3
= 0.095784,  

𝜎
𝑏0
𝑡 ,𝑓1

𝑡
2

1
= 0.172237, 𝜎

𝑏0
𝑡 ,𝑓1

𝑡
2

2
= 0.006726, 𝜎

𝑏0
𝑡 ,𝑓1

𝑡
2

3
= 0.046214. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏1

𝑡, 𝑓2
𝑡
1
∶ 𝜽𝐹11𝑡 |𝑏1𝑡 ,𝑓1𝑡 = {{𝜋𝑏1𝑡 ,𝑓1𝑡𝑖

, 𝜇𝑏1𝑡 ,𝑓1𝑡𝑖
, 𝜎
𝑏1
𝑡 ,𝑓1

𝑡
2

𝑖
}
𝑖=1

4
}) 

consists of a four component, where  

𝜋𝑏1𝑡 ,𝑓1𝑡1
= 0.469497, 𝜋𝑏1𝑡 ,𝑓1𝑡2

= 0.021337, 𝜋𝑏1𝑡 ,𝑓1𝑡3
= 0.25414, 𝜋𝑏1𝑡 ,𝑓1𝑡4

= 0.255026, 

 𝜇𝑏1𝑡 ,𝑓1𝑡1
= 0.042208, 𝜇𝑏1𝑡 ,𝑓1𝑡2

= −0.301057, 𝜇𝑏1𝑡 ,𝑓1𝑡3
= −0.060852, 𝜇𝑏1𝑡 ,𝑓1𝑡4

= 0.174713,  
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𝜎
𝑏1
𝑡 ,𝑓1

𝑡
2

1
= 0.001427, 𝜎

𝑏1
𝑡 ,𝑓1

𝑡
2

2
= 0.052428, 𝜎

𝑏1
𝑡 ,𝑓1

𝑡
2

3
= 0.005467, 𝜎

𝑏1
𝑡 ,𝑓1

𝑡
2

4
= 0.013002. 

The distribution  

𝑝 (𝐹11
𝑡 |𝑏2

𝑡 , 𝑓2
𝑡
1
∶ 𝜽𝐹11𝑡 |𝑏2𝑡 ,𝑓1𝑡 = {{𝜋𝑏2𝑡 ,𝑓1𝑡𝑖

, 𝜇𝑏2𝑡 ,𝑓1𝑡𝑖
, 𝜎
𝑏2
𝑡 ,𝑓1

𝑡
2

𝑖
}
𝑖=1

4
}) 

consists of a four component, where  

𝜋𝑏2𝑡 ,𝑓1𝑡1
= 0.168888, 𝜋𝑏2𝑡 ,𝑓1𝑡2

= 0.00431, 𝜋𝑏2𝑡 ,𝑓1𝑡3
= 0.122409, 𝜋𝑏2𝑡 ,𝑓1𝑡4

= 0.704394, 

 𝜇𝑏2𝑡 ,𝑓1𝑡1
= −0.117194, 𝜇𝑏2𝑡 ,𝑓1𝑡2

= −0.13554, 𝜇𝑏2𝑡 ,𝑓1𝑡3
= −0.612456, 𝜇𝑏2𝑡 ,𝑓1𝑡4

= −0.362567,  

𝜎
𝑏2
𝑡 ,𝑓1

𝑡
2

1
= 0.048962, 𝜎

𝑏2
𝑡 ,𝑓1

𝑡
2

2
= 0.360318, 𝜎

𝑏2
𝑡 ,𝑓1

𝑡
2

3
= 0.007322, 𝜎

𝑏2
𝑡 ,𝑓1

𝑡
2

4
= 0.01292. 

2.3 Parameters of the SAE Level 2 SAGAT Score Model 

For any number of time slices 𝑇 ≥ 1, the SAE Level 2 SAGAT Score model defines the JPD  

𝑝(𝑆2
1:𝑇, 𝑭Rel

1:𝑇 ∶ 𝜽) = 𝑝(𝑆2
1 ∶ 𝜽𝑆21)∏𝑝(𝑆2

𝑡  | 𝑆2
𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1)

𝑇

𝑡=2

∏𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡 ∶ 𝜽)

𝑇

𝑡=1

, 

with 𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡 ∶ 𝜽) given by 

𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑆2

𝑡  ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑆2𝑡). 

As such, the model is defined by three probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel = {𝐹9, 𝐹29, 𝐹35, 𝐹37, 𝐹42, 𝐹52, 𝐹57} are provided in Table 7. 

Table 26: The set of relevant indicators for the SAE Level 2 SAGAT Score model, 𝑭Rel = {𝐹9, 𝐹29, 𝐹35, 𝐹37, 𝐹42, 𝐹52, 𝐹57}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹29 Mean monitoring frequency 

𝐹35 Mean dwell percentage 

𝐹37 Time since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  

𝐹52 Time since last look at tachometer AO  

𝐹57 Time since last look at infotainment AO  

 

Distribution 𝑝(𝑆2
1 ∶ 𝜽𝑆21) 

The distribution 𝑝(𝑆2
1 ∶ 𝜽𝑆21) is a categorical distribution  

𝑝(𝑆2
1 ∶ 𝜽𝑆21) = Cat(𝑆2

1 ∶ 𝜽𝑆21) 

over the discrete variable 𝑆2, Val(𝑆2) = {𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 = 1 , with MAP 

parameters  
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𝜽𝑆21 = {𝜃𝑠210
, 𝜃𝑠211

, 𝜃𝑠212
, 𝜃𝑠213

, 𝜃𝑠214
, 𝜃𝑠215

}

= {0.135163, 0.10816, 0.405193, 0.243175, 0.054154, 0.054154}. 

Distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1) 

The distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 > 1  is a collection of categorical distributions with a 

categorical distribution 

𝑝 (𝑆2
𝑡|𝑠2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1) = Cat (𝑆2
𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1) 

for each 𝑠2
𝑡−1 ∈ Val(𝑆2), parameterized with MAP parameters  

𝜽𝑆2𝑡|𝑆2𝑡−1 = {𝜽𝑆2𝑡|𝑠20
𝑡−1 , 𝜽𝑆2𝑡|𝑠21

𝑡−1 , 𝜽𝑆2𝑡|𝑠22
𝑡−1 , 𝜽𝑆2𝑡|𝑠23

𝑡−1 , 𝜽𝑆2𝑡|𝑠24
𝑡−1 , 𝜽𝑆2𝑡|𝑠25

𝑡−1}, 

where 

𝜽𝑆2𝑡|𝑠20
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠20
𝑡−1 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1 , 𝜃𝑠2𝑡2|𝑠20
𝑡−1 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1 , 𝜃𝑠2𝑡4|𝑠20
𝑡−1 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1}

= {0.999639, 0.000072, 0.000072, 0.000072, 0.000072, 0.000072}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠21
𝑡−1 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1 , 𝜃𝑠2𝑡2|𝑠21
𝑡−1 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1 , 𝜃𝑠2𝑡4|𝑠21
𝑡−1 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1}

= {0.00009, 0.999549, 0.00009, 0.00009, 0.00009, 0.00009}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠22
𝑡−1 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1 , 𝜃𝑠2𝑡2|𝑠22
𝑡−1 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1 , 𝜃𝑠2𝑡4|𝑠22
𝑡−1 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1}

= {0.000024, 0.000024, 0.99988, 0.000024, 0.000024, 0.000024}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠23
𝑡−1 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1 , 𝜃𝑠2𝑡2|𝑠23
𝑡−1 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1 , 𝜃𝑠2𝑡4|𝑠23
𝑡−1 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1}

= {0.00004, 0.00004, 0.00004, 0.999799, 0.00004, 0.00004}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠24
𝑡−1 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1 , 𝜃𝑠2𝑡2|𝑠24
𝑡−1 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1 , 𝜃𝑠2𝑡4|𝑠24
𝑡−1 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1}

= {0.00018, 0.00018, 0.00018, 0.00018, 0.999098, 0.00018}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠25
𝑡−1 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1 , 𝜃𝑠2𝑡2|𝑠25
𝑡−1 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1 , 𝜃𝑠2𝑡4|𝑠25
𝑡−1 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1}

= {0.00018, 0.00018, 0.00018, 0.00018, 0.00018, 0.999098}. 

Distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑆2

𝑡  ∶ 𝜽𝐹9𝑡 ,…,𝐹42𝑡 |𝑆2𝑡) 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑆2

𝑡  ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑆2𝑡) over a seven-dimensional vector 

of continuous variables (𝐹9, 𝐹29, 𝐹35, 𝐹37, 𝐹52, 𝐹57, 𝐹42) at time slice 𝑡 ≥ 1 is a collection of multivariate 

Gaussian mixture distributions with a multivariate GMM  

𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠2

𝑡  ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡) =∑𝜋𝑠2𝑡 𝑖
𝒩(𝝁𝑠2𝑡 𝑖

, Σ𝑠2𝑡 𝑖
)

𝑛𝑠2

𝑖=1

 

composed of 𝑛𝑠2  components for each 𝑠2
𝑡 ∈ Val(𝑆2) , parameterized with MAP parameters 

𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑆2𝑡 = {𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡0
, 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡1

, 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡2
, 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡3

, 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡4
, 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡5

}. 
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The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠20

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡0
= {{𝜋𝑠20

𝑡

𝑖
, 𝝁𝑠20

𝑡
𝑖
, Σ𝑠20

𝑡
𝑖
}
𝑖=1

3

}) 

consists of three components, where  

𝜋𝑠20
𝑡

1
= 0.199947, 𝜋𝑠20

𝑡

2
= 0.400027, 𝜋𝑠20

𝑡

3
= 0.400027 

𝝁𝑠20
𝑡
1
=

(

 
 
 
 

0.781966
0.004969
0.998037
501.492584
284.524865
486.863493
558.708556)

 
 
 
 

,𝝁𝑠20
𝑡
2
=

(

 
 
 
 

0.694945
0.252155
0.913035
138.271519
18.975042
80.23718
514.293089)

 
 
 
 

,𝝁𝑠20
𝑡
3
=

(

 
 
 
 

0.987175
0.040322
0.026824
527.712665
277.149587
1.659239
528.509907)

 
 
 
 

 

 Σ𝑠20
𝑡
1
=

[
 
 
 
 
 
 
0.018071 −0.000165 0.000227 0.445593 0.335516 0.446644 0.300411
−0.000165 0.002755 −0.000462 −0.517602 −0.293713 −0.51974 −0.222312
0.000227 −0.000462 0.009059 0.722822 0.409588 0.725812 0.309694
0.445593 −0.517602 0.722822 3116.83075 533.437328 887.415093 421.61793
0.335516 −0.293713 0.409588 533.437328 977.923578 535.334102 271.389758
0.446644 −0.51974 0.725812 887.415093 535.334102 2822.347208 423.052104
0.300411 −0.222312 0.309694 421.61793 271.389758 423.052104 1923.052325]

 
 
 
 
 
 

, 

Σ𝑠20
𝑡
1
=

[
 
 
 
 
 
 
0.019873 0.002894 0.001863 2.961732 0.070398 −0.138681 −0.739775
0.002894 0.038099 −0.003656 −7.873079 −0.554688 −0.285748 1.224512
0.001863 −0.003656 0.007696 3.292939 0.084354 −0.396062 −1.010929
2.961732 −7.873079 3.292939 6215.53858 369.024845 −196.768645 −1244.929336
0.070398 −0.554688 0.084354 369.024845 431.383102 20.031784 −77.004721
−0.138681 −0.285748 −0.396062 −196.768645 20.031784 1060.279783 133.173844
−0.739775 1.224512 −1.010929 −1244.929336 −77.004721 133.173844 1310.426599 ]

 
 
 
 
 
 

, 

Σ𝑠20
𝑡
1
=

[
 
 
 
 
 
 
0.340792 0.022966 0.01198 2.300344 −132.142596 0.670962 2.044395
0.022966 0.003035 0.001363 −0.092989 −9.951665 0.125715 0.065693
0.01198 0.001363 0.006155 −0.603954 −6.480759 0.257655 −0.089141
2.300344 −0.092989 −0.603954 1679.253388 −899.724587 −134.575626 248.773121

−132.142596 −9.951665 −6.480759 −899.724587 61121.27295 −394.692512 −1059.725845
0.670962 0.125715 0.257655 −134.575626 −394.692512 1011.561018 −40.697456
2.044395 0.065693 −0.089141 248.773121 −1059.725845 −40.697456 997.545386 ]

 
 
 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠21

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡1
= {{𝜋𝑠21

𝑡

𝑖
, 𝝁𝑠21

𝑡
𝑖
, Σ𝑠21

𝑡
𝑖
}
𝑖=1

3

}) 

consists of three components, where  

𝜋𝑠21
𝑡

1
= 0.022198, 𝜋𝑠21

𝑡

2
= 0.500083, 𝜋𝑠21

𝑡

1
= 0.477718 

𝝁𝑠21
𝑡
1
=

(

 
 
 
 

0.920254
0.103412
0.949427
30.831751
47.469392
346.396353
26.550465 )

 
 
 
 

,𝝁𝑠21
𝑡
2
=

(

 
 
 
 

1.259215
0.091513
0.507263
522.059599
121.421227
34.864517
522.856841)

 
 
 
 

,𝝁𝑠21
𝑡
3
=

(

 
 
 
 

0.543961
0.063043
0.98916

297.357684
157.819812
435.888976
390.236057)

 
 
 
 

 

 Σ𝑠21
𝑡
1
=

[
 
 
 
 
 
 
0.197788 −0.002557 0.005102 −1.882869 −0.538495 4.084476 −6.757668
−0.002557 0.02843 −0.002822 1.022743 0.293728 −2.178122 3.630677
0.005102 −0.002822 0.099081 −2.07746 −0.592039 4.492909 −7.439099
−1.882869 1.022743 −2.07746 25605.003 216.045625 −1689.829943 2815.921804
−0.538495 0.293728 −0.592039 216.045625 7207.652865 −475.770656 782.999648
4.084476 −2.178122 4.492909 −1689.829943 −475.770656 25129.73278 −6066.347786
−6.757668 3.630677 −7.439099 2815.921804 782.999648 −6066.347786 28936.75802 ]

 
 
 
 
 
 

, 

Σ𝑠21
𝑡
2
=

[
 
 
 
 
 
 
0.643078 0.043139 0.364969 3.422743 −84.113214 22.86346 2.949334
0.043139 0.00578 0.023959 −0.034014 −5.447369 0.429156 0.083747
0.364969 0.023959 0.225557 1.126472 −50.7741 16.722845 1.257238
3.422743 −0.034014 1.126472 1652.889308 −247.142716 −230.399385 226.927916
−84.113214 −5.447369 −50.7741 −247.142716 12003.82375 −3867.036442 −282.659745
22.86346 0.429156 16.722845 −230.399385 −3867.036442 4545.057267 −163.064443
2.949334 0.083747 1.257238 226.927916 −282.659745 −163.064443 980.219061 ]

 
 
 
 
 
 

, 
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Σ𝑠21
𝑡
3
=

[
 
 
 
 
 
 
0.152952 0.015833 −0.003944 −89.057384 −45.390401 −32.116183 −53.007634
0.015833 0.003488 −0.000789 −9.750997 −5.30524 −3.917498 −6.123498
−0.003944 −0.000789 0.004939 2.256311 1.367311 1.236445 1.485071
−89.057384 −9.750997 2.256311 61393.12725 28970.62194 20579.65426 33797.01577
−45.390401 −5.30524 1.367311 28970.62194 15238.2956 10624.69598 17361.31248
−32.116183 −3.917498 1.236445 20579.65426 10624.69598 8804.310848 12288.71633
−53.007634 −6.123498 1.485071 33797.01577 17361.31248 12288.71633 21154.11305]

 
 
 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠22

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡2
= {{𝜋𝑠22

𝑡

𝑖
, 𝝁𝑠22

𝑡
𝑖
, Σ𝑠22

𝑡
𝑖
}
𝑖=1

4

}) 

consists of four components, where  

𝜋𝑠22
𝑡

1
= 0.250336, 𝜋𝑠22

𝑡

2
= 0.149863, 𝜋𝑠22

𝑡

3
= 0.162118, 𝜋𝑠22

𝑡

4
= 0.437682, 

𝝁𝑠22
𝑡
1
=

(

 
 
 
 

0.279036
0.304791
0.485321
36.446345
34.962404
42.943766
258.488153)

 
 
 
 

,𝝁𝑠22
𝑡
2
=

(

 
 
 
 

0.443577
0.204295
0.160487
12.109562
113.768241
0.486691
266.438129)

 
 
 
 

, 

𝝁𝑠22
𝑡
3
=

(

 
 
 
 

0.783571
0.066575
0.981091
157.451287
74.197428
276.619425
517.311032)

 
 
 
 

,𝝁𝑠22
𝑡
4
=

(

 
 
 
 

0.434456
0.276997
0.928227
9.461318
21.123373
208.52134
509.579516)

 
 
 
 

, 

 Σ𝑠22
𝑡
1
=

[
 
 
 
 
 
 
0.022495 −0.000567 0.01393 −1.332635 −1.209682 2.270549 −17.689437
−0.000567 0.028228 0.051791 −2.321017 −1.430089 4.988003 3.210427
0.01393 0.051791 0.143657 −7.592448 −6.861933 14.227393 −29.679145
−1.332635 −2.321017 −7.592448 1438.763626 401.031725 −914.370216 3015.786355
−1.209682 −1.430089 −6.861933 401.031725 859.999775 −628.957825 3936.440002
2.270549 4.988003 14.227393 −914.370216 −628.957825 2162.438739 −3482.119296
−17.689437 3.210427 −29.679145 3015.786355 3936.440002 −3482.119296 42577.50007 ]

 
 
 
 
 
 

, 

Σ𝑠22
𝑡
2
=

[
 
 
 
 
 
 
0.073843 −0.00032 0.001525 −0.546721 −11.246912 0.086574 −34.41288
−0.00032 0.004813 0.002464 0.08869 −0.310381 0.000093 −0.868886
0.001525 0.002464 0.007373 0.125207 −0.568122 0.155132 −1.57633
−0.546721 0.08869 0.125207 1086.572194 96.555273 39.276996 401.502331
−11.246912 −0.310381 −0.568122 96.555273 2659.867081 −12.760122 7041.254581
0.086574 0.000093 0.155132 39.276996 −12.760122 898.173608 41.166511
−34.41288 −0.868886 −1.57633 401.502331 7041.254581 41.166511 22158.09931]

 
 
 
 
 
 

, 

Σ𝑠22
𝑡
3
=

[
 
 
 
 
 
 
0.104678 −0.001573 0.003502 1.216304 −9.279259 37.391605 −1.568406
−0.001573 0.002353 −0.000614 −0.717112 1.121457 −5.459019 −0.263316
0.003502 −0.000614 0.004643 −0.081036 −0.723704 4.580116 0.034051
1.216304 −0.717112 −0.081036 2057.714232 −390.152006 201.67478 340.357262
−9.279259 1.121457 −0.723704 −390.152006 2505.793166 −10285.46465 97.274693
37.391605 −5.459019 4.580116 201.67478 −10285.46465 54944.52396 −684.010724
−1.568406 −0.263316 0.034051 340.357262 97.274693 −684.010724 880.537805 ]

 
 
 
 
 
 

, 

Σ𝑠22
𝑡
4
=

[
 
 
 
 
 
 
0.045897 −0.001059 −0.001142 0.060292 −0.740815 −3.916704 1.568318
−0.001059 0.023215 −0.005794 −0.152564 −0.793892 −10.146754 −0.119185
−0.001142 −0.005794 0.005595 0.07765 −0.021862 1.686484 −0.348656
0.060292 −0.152564 0.07765 407.484772 −13.950146 −317.771307 −0.093255
−0.740815 −0.793892 −0.021862 −13.950146 351.640173 1319.118322 −64.309529
−3.916704 −10.146754 1.686484 −317.771307 1319.118322 46361.41783 1072.144068
1.568318 −0.119185 −0.348656 −0.093255 −64.309529 1072.144068 627.392451 ]

 
 
 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠23

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡3
= {{𝜋𝑠23

𝑡

𝑖
, 𝝁𝑠23

𝑡
𝑖
, Σ𝑠23

𝑡
𝑖
}
𝑖=1

3

}) 

consists of three components, where  

𝜋𝑠23
𝑡

1
= 0.444469, 𝜋𝑠23

𝑡

2
= 0.333333, 𝜋𝑠23

𝑡

3
= 0.222198, 
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𝝁𝑠23
𝑡
1
=

(

 
 
 
 

0.501033
0.443337
0.859019
13.431129
24.077924
39.693507
287.970781)

 
 
 
 

,𝝁𝑠23
𝑡
2
=

(

 
 
 
 

0.830328
0.125639
0.400015
272.236737
70.735764
121.661237
410.334385)

 
 
 
 

,𝝁𝑠23
𝑡
3
=

(

 
 
 
 

1.626248
0.518032
0.408081
12.113145
89.352978
1.32464
498.151 )

 
 
 
 

, 

 Σ𝑠23
𝑡
1
=

[
 
 
 
 
 
 
0.073826 0.022858 0.000636 −0.751665 −0.501334 0.101585 28.307815
0.022858 0.022259 −0.001946 −1.203065 −1.330808 0.550683 1.837308
0.000636 −0.001946 0.010094 −0.336168 −0.319491 −0.34663 4.70314
−0.751665 −1.203065 −0.336168 865.394807 86.775056 −50.197512 1.213522
−0.501334 −1.330808 −0.319491 86.775056 473.823775 11.787009 442.749316
0.101585 0.550683 −0.34663 −50.197512 11.787009 1059.012117 −115.458208
28.307815 1.837308 4.70314 1.213522 442.749316 −115.458208 19242.10361]

 
 
 
 
 
 

, 

Σ𝑠23
𝑡
2
=

[
 
 
 
 
 
 
0.499934 0.054683 −0.041993 −85.689175 27.156393 −39.588329 −89.591083
0.054683 0.010894 0.011437 −12.530175 2.931497 1.50962 −9.488056
−0.041993 0.011437 0.177237 −20.537941 −4.424114 69.503944 17.581943
−85.689175 −12.530175 −20.537941 21445.73398 −4506.069784 −3146.128403 15333.04191
27.156393 2.931497 −4.424114 −4506.069784 1811.995913 −3087.65452 −5205.126827
−39.588329 1.50962 69.503944 −3146.128403 −3087.65452 30081.54387 11967.86258
−89.591083 −9.488056 17.581943 15333.04191 −5205.126827 11967.86258 19009.2892 ]

 
 
 
 
 
 

, 

Σ𝑠23
𝑡
3
=

[
 
 
 
 
 
 
0.748676 0.224966 0.154853 −4.192448 34.603741 −0.148133 1.667625
0.224966 0.088439 0.056803 −1.520401 12.383782 −0.015677 0.237072
0.154853 0.056803 0.044138 −0.686427 8.698238 0.148074 0.184355
−4.192448 −1.520401 −0.686427 1227.70381 −138.573351 42.296101 −4.222391
34.603741 12.383782 8.698238 −138.573351 2403.501417 8.99414 167.681348
−0.148133 −0.015677 0.148074 42.296101 8.99414 1009.479191 −33.654143
1.667625 0.237072 0.184355 −4.222391 167.681348 −33.654143 956.934204]

 
 
 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠24

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡4
= {{𝜋𝑠24

𝑡

𝑖
, 𝝁𝑠24

𝑡
𝑖
, Σ𝑠24

𝑡
𝑖
}
𝑖=1

2

}) 

consists of two components, where  

𝜋𝑠24
𝑡

1
= 0.5, 𝜋𝑠24

𝑡

2
= 0.5, 

𝝁𝑠24
𝑡
1
=

(

 
 
 
 

0.298987
0.071915
0.994981
12.98663
51.443285
49.726247
491.650833)

 
 
 
 

,𝝁𝑠24
𝑡
2
=

(

 
 
 
 

0.454703
0.443627
0.829744
9.465794
26.174894
33.225252
68.941687)

 
 
 
 

, 

 Σ𝑠24
𝑡
1
=

[
 
 
 
 
 
 
0.023878 −0.000367 −0.000713 −0.021593 −0.47538 −0.378094 −0.731559
−0.000367 0.002903 −0.000354 0.131265 0.036348 0.080474 −0.079849
−0.000713 −0.000354 0.009055 −0.226668 −0.045642 −0.13133 0.179999
−0.021593 0.131265 −0.226668 2396.960837 48.376016 80.6964 −36.732527
−0.47538 0.036348 −0.045642 48.376016 722.057861 85.640164 61.102567
−0.378094 0.080474 −0.13133 80.6964 85.640164 2035.550908 37.346328
−0.731559 −0.079849 0.179999 −36.732527 61.102567 37.346328 1823.231109]

 
 
 
 
 
 

, 

Σ𝑠24
𝑡
1
=

[
 
 
 
 
 
 
0.028899 0.020337 0.002483 0.198073 0.738283 0.783177 −3.178141
0.020337 0.046626 0.005406 0.098301 1.176524 1.133215 −8.451297
0.002483 0.005406 0.009364 −0.077569 0.06612 0.032517 −1.204525
0.198073 0.098301 −0.077569 2361.030022 32.236774 58.836188 192.605383
0.738283 1.176524 0.06612 32.236774 733.696795 101.271801 −192.621693
0.783177 1.133215 0.032517 58.836188 101.271801 2051.003352 −122.231639
−3.178141 −8.451297 −1.204525 192.605383 −192.621693 −122.231639 4395.718723]

 
 
 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹29

𝑡 , 𝐹35
𝑡 , 𝐹37

𝑡 , 𝐹52
𝑡 , 𝐹57

𝑡 , 𝐹42
𝑡  | 𝑠25

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹42𝑡 |𝑠2𝑡5
= {{𝜋𝑠25

𝑡

𝑖
, 𝝁𝑠25

𝑡

𝑖

, Σ𝑠25
𝑡

𝑖
}
𝑖=1

1

}) 

consists of a single component, where  

𝜋𝑠25
𝑡

1
= 1, 
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𝝁𝑠25
𝑡

1

=

(

 
 
 
 

0.791217
0.325507
0.506691
13.458963
75.336068
3.821791
158.968508)

 
 
 
 

, 

 Σ𝑠25
𝑡
1
=

[
 
 
 
 
 
 
0.121724 0.004611 0.013229 2.365665 −7.505928 0.447338 8.152855
0.004611 0.009165 −0.001136 −0.204106 −1.195165 0.097213 −0.250741
0.013229 −0.001136 0.075913 −0.169265 −11.445818 0.849885 7.128616
2.365665 −0.204106 −0.169265 1289.740792 −113.925517 38.400307 256.053358
−7.505928 −1.195165 −11.445818 −113.925517 2960.682017 −139.948638 −1463.086337
0.447338 0.097213 0.849885 38.400307 −139.948638 1030.244676 189.364818
8.152855 −0.250741 7.128616 256.053358 −1463.086337 189.364818 2401.569986 ]

 
 
 
 
 
 

. 

2.4 Parameters of the SAE Level 3 SAGAT Score Model 

For any number of time slices 𝑇 ≥ 1, the SAE Level 3 SAGAT Score model defines the JPD  

𝑝(𝑆2
1:𝑇, 𝑭Rel

1:𝑇 ∶ 𝜽) = 𝑝(𝑆2
1 ∶ 𝜽𝑆21)∏𝑝(𝑆2

𝑡  | 𝑆2
𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1)

𝑇

𝑡=2

∏𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡 ∶ 𝜽)

𝑇

𝑡=1

, 

with 𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡 ∶ 𝜽) given by 

𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑆2

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑆2𝑡)𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑆2
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑆2𝑡). 

As such, the model is defined by four probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel = {𝐹9, 𝐹12, 𝐹16, 𝐹29, 𝐹31, 𝐹37, 𝐹43,𝐹57,𝐹58} are provided in 

Table 8. 

Table 27: The set of relevant indicators for the SAE Level 3 SAGAT Score model, 𝑭Rel = {𝐹9, 𝐹12, 𝐹16, 𝐹29, 𝐹31, 𝐹37, 𝐹43, 𝐹57, 𝐹58}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹12 Mean yaw angle of the head 

𝐹16 Yaw rate of the head variability 

𝐹29 Mean monitoring frequency 

𝐹31 Saccade frequency 

𝐹37 Time since last look at left mirror AO  

𝐹43 Mean  me since last look at right mirror AO  

𝐹57 Time since last look at infotainment AO  

𝐹58 Mean  me since last look at infotainment AO  

  

Distribution 𝑝(𝑆2
1 ∶ 𝜽𝑆21) 

The distribution 𝑝(𝑆2
1 ∶ 𝜽𝑆21) is a categorical distribution  

𝑝(𝑆2
1 ∶ 𝜽𝑆21) = Cat(𝑆2

1 ∶ 𝜽𝑆21) 

over the discrete variable 𝑆2, Val(𝑆2) = {𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 = 1 , with MAP 

parameters  
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𝜽𝑆21 = {𝜃𝑠210
, 𝜃𝑠211

, 𝜃𝑠212
, 𝜃𝑠213

, 𝜃𝑠214
, 𝜃𝑠215

}

= {0.243175, 0.189169, 0.162166, 0.162184, 0.216154, 0.027151}. 

Distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1) 

The distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 > 1  is a collection of categorical distributions with a 

categorical distribution 

𝑝 (𝑆2
𝑡|𝑠2

𝑡−1 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1) = Cat (𝑆2
𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1) 

for each 𝑠2
𝑡−1 ∈ Val(𝑆2) , parameterized with MAP parameters 𝜽𝑆2𝑡|𝑆2𝑡−1 =

{𝜽𝑆2𝑡|𝑠20
𝑡−1 , 𝜽𝑆2𝑡|𝑠21

𝑡−1 , 𝜽𝑆2𝑡|𝑠22
𝑡−1 , 𝜽𝑆2𝑡|𝑠23

𝑡−1 , 𝜽𝑆2𝑡|𝑠24
𝑡−1 , 𝜽𝑆2𝑡|𝑠25

𝑡−1}, where 

𝜽𝑆2𝑡|𝑠20
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠20
𝑡−1 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1 , 𝜃𝑠2𝑡2|𝑠20
𝑡−1 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1 , 𝜃𝑠2𝑡4|𝑠20
𝑡−1 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1}

= {0.999799, 0.00004, 0.00004, 0.00004, 0.00004, 0.00004}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠21
𝑡−1 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1 , 𝜃𝑠2𝑡2|𝑠21
𝑡−1 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1 , 𝜃𝑠2𝑡4|𝑠21
𝑡−1 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1}

= {0.000052, 0.999742, 0.000052, 0.000052, 0.000052, 0.000052}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠22
𝑡−1 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1 , 𝜃𝑠2𝑡2|𝑠22
𝑡−1 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1 , 𝜃𝑠2𝑡4|𝑠22
𝑡−1 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1}

= {0.00006, 0.00006, 0.999699, 0.00006, 0.00006, 0.00006}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠23
𝑡−1 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1 , 𝜃𝑠2𝑡2|𝑠23
𝑡−1 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1 , 𝜃𝑠2𝑡4|𝑠23
𝑡−1 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1}

= {0.00006, 0.00006, 0.00006, 0.999699, 0.00006, 0.00006}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠24
𝑡−1 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1 , 𝜃𝑠2𝑡2|𝑠24
𝑡−1 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1 , 𝜃𝑠2𝑡4|𝑠24
𝑡−1 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1}

= {0.000045, 0.000045, 0.000045, 0.000045, 0.999774, 0.000045}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1 = {𝜃𝑠20

𝑡 |𝑠25
𝑡−1 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1 , 𝜃𝑠2𝑡2|𝑠25
𝑡−1 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1 , 𝜃𝑠2𝑡4|𝑠25
𝑡−1 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1}

= {0.00036, 0.00036, 0.00036, 0.00036, 0.00036, 0.998198}. 

Distribution 𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑆2

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑆2𝑡) 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑆2

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑆2𝑡)  over a five-dimensional vector of 

continuous variables (𝐹9, 𝐹16, 𝐹58, 𝐹43, 𝐹12) at time slice 𝑡 ≥ 1 is a collection of multivariate Gaussian 

mixture distributions with a multivariate GMM  

𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠2

𝑡  ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡) =∑𝜋𝑠2𝑡 𝑖
𝒩(𝝁𝑠2𝑡 𝑖

, Σ𝑠2𝑡 𝑖
)

𝑛𝑠2

𝑖=1

 

composed of 𝑛𝑠2  components for each 𝑠2
𝑡 ∈ Val(𝑆2) , parameterized with MAP parameters 

𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑆2𝑡 = {𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡0
, 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡1

, 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡2
, 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡3

, 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡4
, 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡5

}. 
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The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠20

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡0
= {{𝜋𝑠20

𝑡

𝑖
, 𝝁𝑠20

𝑡
𝑖
, Σ𝑠20

𝑡
𝑖
}
𝑖=1

5

})  consists of 

five components, where  

𝜋𝑠20
𝑡

1
= 0.354124, 𝜋𝑠20

𝑡

2
= 0.111078, 𝜋𝑠20

𝑡

3
= 0.105965, 𝜋𝑠20

𝑡

4
= 0.408781, 𝜋𝑠20

𝑡

5
= 0.020051, 

𝝁𝑠20
𝑡
1
=

(

 
 

0.998207
0.49185
4.884591
353.719197
−0.355784)

 
 
,𝝁𝑠20

𝑡
2
=

(

 
 

1.196385
0.184465
302.447637
334.218223
0.171572 )

 
 
,𝝁𝑠20

𝑡
3
=

(

 
 

1.063341
1.32041
1.45427

324.811379
−0.261918)

 
 
, 

𝝁𝑠20
𝑡
4
=

(

 
 

0.300914
0.150305
164.400883
316.764475
−0.16165 )

 
 
, 𝝁𝑠20

𝑡
5
=

(

 
 

0.19029
0.175349
97.657166
387.066817
0.053045 )

 
 
, 

 Σ𝑠20
𝑡
1
=

[
 
 
 
 
0.280035 0.117991 −2.815073 −10.523058 −0.124693
0.117991 0.085504 −1.369285 −5.223094 −0.051323
−2.815073 −1.369285 343.10996 213.317739 1.925602
−10.523058 −5.223094 213.317739 1124.932199 7.439929
−0.124693 −0.051323 1.925602 7.439929 0.077321 ]

 
 
 
 

, 

Σ𝑠20
𝑡
2
=

[
 
 
 
 
0.03718 −0.000099 1.132272 0.725282 −0.004189
−0.000099 0.007055 0.203908 0.271313 −0.001361
1.132272 0.203908 1040.728553 122.426056 −0.0524
0.725282 0.271313 122.426056 636.808261 −0.223932
−0.004189 −0.001361 −0.0524 −0.223932 0.004495 ]

 
 
 
 

, 

Σ𝑠20
𝑡
3
=

[
 
 
 
 
0.168178 0.090548 −0.062489 1.262115 0.029818
0.090548 0.233062 −0.399029 2.136897 0.03706
−0.062489 −0.399029 879.480861 −20.357836 0.141187
1.262115 2.136897 −20.357836 657.571022 0.489549
0.029818 0.03706 0.141187 0.489549 0.013742 ]

 
 
 
 

, 

Σ𝑠20
𝑡
4
=

[
 
 
 
 
0.032807 −0.009147 20.530641 0.149889 0.02354
−0.009147 0.011683 −13.540046 0.640877 −0.014827
20.530641 −13.540046 22939.90675 −739.759728 25.593922
0.149889 0.640877 −739.759728 313.432971 −0.802975
0.02354 −0.014827 25.593922 −0.802975 0.030211 ]

 
 
 
 

, 

Σ𝑠20
𝑡
5
=

[
 
 
 
 
0.063411 0.001227 −1.678308 −0.775997 −0.001261
0.001227 0.027619 0.132723 −0.286207 −0.000447
−1.678308 0.132723 5843.547261 −176.981391 0.038051
−0.775997 −0.286207 −176.981391 3340.903637 0.393108
−0.001261 −0.000447 0.038051 0.393108 0.013739 ]

 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠21

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡1
= {{𝜋𝑠21

𝑡

𝑖
, 𝝁𝑠21

𝑡
𝑖
, Σ𝑠21

𝑡
𝑖
}
𝑖=1

4

})  consists of 

four components, where  

𝜋𝑠21
𝑡

1
= 0.172303, 𝜋𝑠21

𝑡

2
= 0.256504, 𝜋𝑠21

𝑡

3
= 0.142816, 𝜋𝑠21

𝑡

4
= 0.428376, 

𝝁𝑠21
𝑡
1
=

(

 
 

0.432434
0.416753
83.648455
228.732384
−0.036407)

 
 
,𝝁𝑠21

𝑡
2
=

(

 
 

0.475514
0.161682
161.753187
334.385665
−0.262146)

 
 
,𝝁𝑠21

𝑡
3
=

(

 
 

0.23213
0.117963
18.803877
339.195005
−0.01679 )

 
 
, 

𝝁𝑠21
𝑡
4
=

(

 
 

0.944837
0.467568
141.398794
303.399442
0.024308 )

 
 
, 
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 Σ𝑠21
𝑡
1
=

[
 
 
 
 
0.132036 0.032707 45.595531 23.944132 −0.017231
0.032707 0.072584 4.637417 4.038668 −0.009123
45.595531 4.637417 18837.0245 9212.613848 −5.58693
23.944132 4.038668 9212.613848 5337.642897 −3.365136
−0.017231 −0.009123 −5.58693 −3.365136 0.006508 ]

 
 
 
 

, 

Σ𝑠21
𝑡
1
=

[
 
 
 
 
0.222257 −0.042198 83.044766 13.572011 0.053211
−0.042198 0.015965 −16.881438 −2.459491 −0.010671
83.044766 −16.881438 33385.20463 5259.760901 21.235768
13.572011 −2.459491 5259.760901 1207.344169 3.311774
0.053211 −0.010671 21.235768 3.311774 0.015259 ]

 
 
 
 

, 

Σ𝑠21
𝑡
1
=

[
 
 
 
 
0.0342 −0.008198 0.089153 −1.28787 0.001801

−0.008198 0.02747 0.514354 0.704414 −0.002485
0.089153 0.514354 916.591919 −39.990443 0.034747
−1.28787 0.704414 −39.990443 639.344288 −0.141119
0.001801 −0.002485 0.034747 −0.141119 0.002878 ]

 
 
 
 

, 

Σ𝑠21
𝑡
1
=

[
 
 
 
 
0.378955 0.234178 −57.36198 18.068005 −0.11325
0.234178 0.252858 −48.599471 12.561779 −0.083861
−57.36198 −48.599471 10958.04913 −2851.036006 19.967604
18.068005 12.561779 −2851.036006 1159.796937 −5.568102
−0.11325 −0.083861 19.967604 −5.568102 0.041493 ]

 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠22

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡2
= {{𝜋𝑠22

𝑡

𝑖
, 𝝁𝑠22

𝑡
𝑖
, Σ𝑠22

𝑡
𝑖
}
𝑖=1

4

})  consists of 

four components, where  

𝜋𝑠22
𝑡

1
= 0.500111, 𝜋𝑠22

𝑡

2
= 0.066476, 𝜋𝑠22

𝑡

3
= 0.266783, 𝜋𝑠22

𝑡

4
= 0.16663, 

𝝁𝑠22
𝑡
1
=

(

 
 

1.103758
0.446624
0.547038
330.218985
−0.362522)

 
 
,𝝁𝑠22

𝑡
2
=

(

 
 

0.272084
0.711233
98.894977
198.055446
0.013296 )

 
 
,𝝁𝑠22

𝑡
3
=

(

 
 

0.233219
0.165228
90.547067
193.076166
0.029272 )

 
 
, 

𝝁𝑠22
𝑡
4
=

(

 
 

0.124485
0.126456
331.77072
342.021738
0.060199 )

 
 
, 

 Σ𝑠22
𝑡
1
=

[
 
 
 
 
0.166964 −0.031926 −0.123631 2.111055 −0.013615
−0.031926 0.037319 0.003122 −0.542773 0.013363
−0.123631 0.003122 280.036624 −9.397327 0.059029
2.111055 −0.542773 −9.397327 477.526746 0.174995
−0.013615 0.013363 0.059029 0.174995 0.008992 ]

 
 
 
 

, 

Σ𝑠22
𝑡
2
=

[
 
 
 
 
0.052272 0.014318 10.905991 −30.368109 −0.011072
0.014318 0.023889 6.462349 −18.801035 −0.006196
10.905991 6.462349 6503.689454 −12703.03845 −4.199779
−30.368109 −18.801035 −12703.03845 37480.63917 11.932406
−0.011072 −0.006196 −4.199779 11.932406 0.011527 ]

 
 
 
 

, 

Σ𝑠22
𝑡
3
=

[
 
 
 
 
0.018119 0.010036 4.683567 −15.494831 −0.008132
0.010036 0.024193 8.353843 −25.337262 −0.011346
4.683567 8.353843 4186.427327 −11194.2805 −5.112736
−15.494831 −25.337262 −11194.2805 34919.85229 16.298637
−0.008132 −0.011346 −5.112736 16.298637 0.011451 ]

 
 
 
 

, 

Σ𝑠22
𝑡
4
=

[
 
 
 
 
0.017687 0.001906 −0.965245 −0.603432 −0.000066
0.001906 0.017402 −0.018047 0.104355 −0.000796
−0.965245 −0.018047 1098.482512 137.766958 0.06152
−0.603432 0.104355 137.766958 640.883223 −0.049487
−0.000066 −0.000796 0.06152 −0.049487 0.002638 ]

 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠23

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡3
= {{𝜋𝑠23

𝑡

𝑖
, 𝝁𝑠23

𝑡
𝑖
, Σ𝑠23

𝑡
𝑖
}
𝑖=1

3

})  consists of 

three components, where  

𝜋𝑠23
𝑡

1
= 0.166704, 𝜋𝑠23

𝑡

2
= 0.5, 𝜋𝑠23

𝑡

3
= 0.333296, 
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𝝁𝑠23
𝑡
1
=

(

 
 

0.336465
0.039687
31.313578
35.080789
0.07995 )

 
 
,𝝁𝑠23

𝑡
2
=

(

 
 

0.52301
0.189244
34.041718
337.787248
0.057523 )

 
 
,𝝁𝑠23

𝑡
3
=

(

 
 

0.720108
0.217793
151.889971
42.779146
−0.256548)

 
 
, 

 Σ𝑠23
𝑡
1
=

[
 
 
 
 
0.012592 0.000738 0.375983 0.113605 −0.000015
0.000738 0.005243 −0.022174 0.287276 −0.000116
0.375983 −0.022174 2146.647732 −70.495397 −0.167242
0.113605 0.287276 −70.495397 910.338116 −0.182674
−0.000015 −0.000116 −0.167242 −0.182674 0.002545 ]

 
 
 
 

, 

Σ𝑠23
𝑡
2
=

[
 
 
 
 
0.021095 −0.001322 −0.870028 −0.141637 −0.00201
−0.001322 0.016611 1.112584 0.140606 −0.002482
−0.870028 1.112584 767.98048 0.383231 −0.556985
−0.141637 0.140606 0.383231 266.493081 0.187485
−0.00201 −0.002482 −0.556985 0.187485 0.004991 ]

 
 
 
 

, 

Σ𝑠23
𝑡
3
=

[
 
 
 
 
0.163826 −0.023968 58.802882 5.521306 0.089901
−0.023968 0.015941 −9.273682 −1.013223 −0.01442
58.802882 −9.273682 23412.19386 2138.362866 34.007893
5.521306 −1.013223 2138.362866 680.434879 3.501795
0.089901 −0.01442 34.007893 3.501795 0.053759 ]

 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠24

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡4
= {{𝜋𝑠24

𝑡

𝑖
, 𝝁𝑠24

𝑡
𝑖
, Σ𝑠24

𝑡
𝑖
}
𝑖=1

4

})  consists of 

four components, where  

𝜋𝑠24
𝑡

1
= 0.475115, 𝜋𝑠24

𝑡

2
= 0.37493, 𝜋𝑠24

𝑡

3
= 0.125029, 𝜋𝑠24

𝑡

4
= 0.024927, 

𝝁𝑠24
𝑡
1
=

(

 
 

0.296084
0.141028
23.309735
315.154563
−0.034965)

 
 
,𝝁𝑠24

𝑡
2
=

(

 
 

0.587321
0.084191
255.266304
248.424193
0.109114 )

 
 
,𝝁𝑠24

𝑡
3
=

(

 
 

0.284545
0.167614
267.771239
339.930298
0.023065 )

 
 
, 

𝝁𝑠24
𝑡
4
=

(

 
 

0.423869
1.242519
58.842895
350.022009
0.157961 )

 
 
, 

 Σ𝑠24
𝑡
1
=

[
 
 
 
 
0.013383 0.002141 0.877331 0.406829 0.005782
0.002141 0.008695 −0.40694 0.083467 −0.005105
0.877331 −0.40694 787.93504 255.822342 2.466053
0.406829 0.083467 255.822342 339.068153 0.465229
0.005782 −0.005105 2.466053 0.465229 0.025793 ]

 
 
 
 

, 

Σ𝑠24
𝑡
2
=

[
 
 
 
 
0.02586 −0.002524 11.228084 16.730884 −0.002862
−0.002524 0.002961 −2.11311 −3.145352 0.000781
11.228084 −2.11311 8389.851822 12114.80298 −1.974341
16.730884 −3.145352 12114.80298 18383.99034 −3.121037
−0.002862 0.000781 −1.974341 −3.121037 0.001876 ]

 
 
 
 

, 

Σ𝑠24
𝑡
3
=

[
 
 
 
 
0.018046 0.005092 −0.0461 0.0958 −0.001134
0.005092 0.01344 0.528234 0.587164 0.001466
−0.0461 0.528234 983.353347 118.236132 0.337758
0.0958 0.587164 118.236132 639.481883 0.284769

−0.001134 0.001466 0.337758 0.284769 0.003811 ]
 
 
 
 

, 

Σ𝑠24
𝑡
4
=

[
 
 
 
 
0.049989 −0.003865 0.391383 −0.297565 −0.00101
−0.003865 0.045893 −1.164792 1.551202 0.005495
0.391383 −1.164792 4138.029819 −99.265509 −0.31283
−0.297565 1.551202 −99.265509 2850.907579 0.393067
−0.00101 0.005495 −0.31283 0.393067 0.013386 ]

 
 
 
 

. 

The distribution 𝑝 (𝐹9
𝑡, 𝐹16

𝑡 , 𝐹58
𝑡 , 𝐹43

𝑡 , 𝐹12
𝑡  | 𝑠25

𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹12𝑡 |𝑠2𝑡5
= {{𝜋𝑠25

𝑡

𝑖
, 𝝁𝑠25

𝑡

𝑖

, Σ𝑠25
𝑡

𝑖
}
𝑖=1

1

})  consists of a 

single component, where  
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𝜋𝑠25
𝑡

1
= 1, 

𝝁𝑠25
𝑡

1

=

(

 
 

0.412788
0.351516
90.715442
110.160576
0.159405 )

 
 
, 

 Σ𝑠25
𝑡
1
=

[
 
 
 
 
0.080801 0.008745 0.66874 1.725614 0.003627
0.008745 0.010819 0.102851 0.064256 0.007594
0.66874 0.102851 862.843003 41.754791 −0.786508
1.725614 0.064256 41.754791 775.354803 −0.323846
0.003627 0.007594 −0.786508 −0.323846 0.028863 ]

 
 
 
 

. 

Distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑆2
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑆2𝑡) 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑆2
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑆2𝑡) over a four-dimensional vector of continuous 

variables (𝐹29, 𝐹31, 𝐹37, 𝐹57)  at time slice 𝑡 ≥ 1  is a collection of multivariate Gaussian mixture 

distributions with a multivariate GMM  

𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠2
𝑡  ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡) =∑𝜋𝑠2𝑡 𝑖

𝒩(𝝁𝑠2𝑡 𝑖
, Σ𝑠2𝑡 𝑖

)

𝑛𝑠2

𝑖=1

 

composed of 𝑛𝑠2  components for each 𝑠2
𝑡 ∈ Val(𝑆2) , parameterized with MAP parameters 

𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑆2𝑡 = {𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡0
, 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡1

, 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡2
, 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡3

, 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡4
, 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡5

}. 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠20
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡0

= {{𝜋𝑠20
𝑡

𝑖
, 𝝁𝑠20

𝑡
𝑖
, Σ𝑠20

𝑡
𝑖
}
𝑖=1

4

}) consists of four 

components, where  

𝜋𝑠20
𝑡

1
= 0.11107, 𝜋𝑠20

𝑡

2
= 0.555646, 𝜋𝑠20

𝑡

3
= 0.11107, 𝜋𝑠20

𝑡

4
= 0.222214, 

𝝁𝑠20
𝑡
1
= (

0.031913
1.130844
312.306102
307.052591

) , 𝝁𝑠20
𝑡
2
= (

0.090008
1.961423
292.836935
0.458007

) , 𝝁𝑠20
𝑡
3
= (

0.439662
1.391309
18.641658
17.530823

), 

𝝁𝑠20
𝑡
4
= (

0.229065
0.800428
15.183225
307.290975

), 

 Σ𝑠20
𝑡
1
= [

0.002017 0.002253 −0.077311 −0.059524
0.002253 0.138032 1.572257 1.60459
−0.077311 1.572257 880.23294 251.747417
−0.059524 1.60459 251.747417 937.586233

] , Σ𝑠20
𝑡
2
= [

0.009731 0.017925 −2.56754 0.036439
0.017925 0.484587 −12.870633 −0.083823
−2.56754 −12.870633 3404.88569 −18.42454
0.036439 −0.083823 −18.42454 150.608576 

], 

Σ𝑠20
𝑡
3
= [

0.024695 0.057076 −1.116055 0.959694
0.057076 0.184675 −2.740089 2.305402
−1.116055 −2.740089 875.865756 7.557769
0.959694 2.305402 7.557769 810.720368 

] , Σ𝑠20
𝑡
4
= [

0.013501 0.032706 −0.368009 0.06507
0.032706 0.154674 −2.20359 0.600055
−0.368009 −2.20359 407.853189 −60.316354
0.06507 0.600055 −60.316354 506.903852

]. 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠21
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡1

= {{𝜋𝑠21
𝑡

𝑖
, 𝝁𝑠21

𝑡
𝑖
, Σ𝑠21

𝑡
𝑖
}
𝑖=1

4

}) consists of four 

components, where  

𝜋𝑠21
𝑡

1
= 0.142816, 𝜋𝑠21

𝑡

2
= 0.142817, 𝜋𝑠21

𝑡

3
= 0.57155, 𝜋𝑠21

𝑡

4
= 0.142817, 
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𝝁𝑠21
𝑡
1
= (

0.27409
1.148377
373.720477
372.291667

) , 𝝁𝑠21
𝑡
2
= (

0.101335
1.802608
128.977652
185.279463

) , 𝝁𝑠21
𝑡
3
= (

0.157113
1.671719
28.65708
8.553599

) 

, 𝝁𝑠21
𝑡
4
= (

0.141415
1.114646
16.794366
248.047925

), 

 Σ𝑠21
𝑡
1
= [

0.00238 0.000495 0.185872 0.183215
0.000495 0.046293 0.602816 0.628178
0.185872 0.602816 1004.301203 374.820924
0.183215 0.628178 374.820924 1059.059895 

] , Σ𝑠21
𝑡
2
= [

0.002491 −0.005336 −0.21556 −0.237202
−0.005336 0.33926 2.905767 2.951961
−0.21556 2.905767 690.105181 86.679214
−0.237202 2.951961 86.679214 802.422407

], 

Σ𝑠21
𝑡
3
= [

0.010819 −0.009186 −1.413846 0.296284
−0.009186 0.789851 5.989069 −7.336144
−1.413846 5.989069 821.090788 −32.214805
0.296284 −7.336144 −32.214805 337.538865 

] , Σ𝑠21
𝑡
4
= [

0.004196 0.004461 0.034534 −0.277625
0.004461 0.18485 −2.055146 1.880832
0.034534 −2.055146 774.589555 −59.9922
−0.277625 1.880832 −59.9922 857.218892 

]. 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠22
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡2

= {{𝜋𝑠22
𝑡

𝑖
, 𝝁𝑠22

𝑡
𝑖
, Σ𝑠22

𝑡
𝑖
}
𝑖=1

4

}) consists of four 

components, where  

𝜋𝑠22
𝑡

1
= 0.449754, 𝜋𝑠22

𝑡

2
= 0.16663, 𝜋𝑠22

𝑡

3
= 0.050256, 𝜋𝑠22

𝑡

4
= 0.33336, 

𝝁𝑠22
𝑡
1
= (

0.248582
1.644591
11.931372
11.100367

) , 𝝁𝑠22
𝑡
2
= (

0.551126
1.382762
10.138191
158.705752

) , 𝝁𝑠22
𝑡
3
= (

0.003655
2.23618

228.028958
1.693283

), 

𝝁𝑠22
𝑡
4
= (

0.206387
1.10487

180.017874
168.96736

), 

 Σ𝑠22
𝑡
1
= [

0.029752 −0.097185 −0.395654 2.055558
−0.097185 0.78833 5.163235 −10.412508
−0.395654 5.163235 304.008681 −34.010592
2.055558 −10.412508 −34.010592 539.404497

] , Σ𝑠22
𝑡
2
= [

0.086294 0.122809 −1.900067 2.529234
0.122809 0.227738 −3.338176 3.69441
−1.900067 −3.338176 727.199874 −74.986333
2.529234 3.69441 −74.986333 788.569272 

], 

Σ𝑠22
𝑡
3
= [

0.006145 −0.002364 −0.41985 0.331667
−0.002364 0.096543 1.240592 −1.083481
−0.41985 1.240592 2273.640521 −192.900723
0.331667 −1.083481 −192.900723 2474.979302

] , Σ𝑠22
𝑡
4
= [

0.013889 0.087534 18.143013 −18.745276
0.087534 0.694511 130.912694 −135.24096
18.143013 130.912694 27476.50247 −27713.26551
−18.745276 −135.24096 −27713.26551 28855.67759

]. 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠23
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡3

= {{𝜋𝑠23
𝑡

𝑖
, 𝝁𝑠23

𝑡
𝑖
, Σ𝑠23

𝑡
𝑖
}
𝑖=1

3

}) consists of three 

components, where  

𝜋𝑠23
𝑡

1
= 0.451453, 𝜋𝑠23

𝑡

2
= 0.261208, 𝜋𝑠23

𝑡

3
= 0.28734, 

𝝁𝑠23
𝑡
1
= (

0.173674
1.549939
27.787112
36.831191

) , 𝝁𝑠23
𝑡
2
= (

0.202541
2.479534
29.193879
196.810506

) , 𝝁𝑠23
𝑡
3
= (

0.509982
1.100802
22.357792
13.658749

), 

 Σ𝑠23
𝑡
1
= [

0.007608 0.031755 −0.725512 0.55021
0.031755 0.262668 −4.297699 0.588278
−0.725512 −4.297699 571.007375 −333.050523
0.55021 0.588278 −333.050523 909.397638 

] , Σ𝑠23
𝑡
2
= [

0.016145 −0.042102 −0.371132 15.998061
−0.042102 0.213379 −0.009726 −49.960885
−0.371132 −0.009726 567.279507 −370.425925
15.998061 −49.960885 −370.425925 22434.21068

], 

Σ𝑠23
𝑡
3
= [

0.035461 0.00677 −1.700938 −0.276572
0.00677 0.043767 −0.271145 0.188718
−1.700938 −0.271145 483.082712 9.198255
−0.276572 0.188718 9.198255 508.410869

], 
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The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠24
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡4

= {{𝜋𝑠24
𝑡

𝑖
, 𝝁𝑠24

𝑡
𝑖
, Σ𝑠24

𝑡
𝑖
}
𝑖=1

3

}) consists of three 

components, where  

𝜋𝑠24
𝑡

1
= 0.26277, 𝜋𝑠24

𝑡

2
= 0.237164, 𝜋𝑠24

𝑡

3
= 0.500068, 

𝝁𝑠24
𝑡
1
= (

0.084999
1.122169
78.507624
223.315752

) , 𝝁𝑠24
𝑡
2
= (

0.358232
1.195114
6.485601
307.854018

) , 𝝁𝑠24
𝑡
3
= (

0.389875
1.587373
26.329552
23.214887

), 

 Σ𝑠24
𝑡
1
= [

0.007439 0.003735 −3.331525 −6.383244
0.003735 0.183437 −0.464626 −0.322744
−3.331525 −0.464626 2239.717655 3740.7714
−6.383244 −0.322744 3740.7714 7642.125286

] , Σ𝑠24
𝑡
2
= [

0.045994 0.112682 0.134118 6.55242
0.112682 0.380323 0.123483 17.318859
0.134118 0.123483 356.963625 4.915314
6.55242 17.318859 4.915314 1516.870146 

], 

 Σ𝑠24
𝑡
3
= [

0.047958 −0.031671 −2.415569 3.529097
−0.031671 0.354213 −8.096071 −9.084462
−2.415569 −8.096071 773.547235 −119.627045
3.529097 −9.084462 −119.627045 876.734747 

]. 

The distribution 𝑝 (𝐹29
𝑡 , 𝐹31

𝑡 , 𝐹37
𝑡 , 𝐹57

𝑡  | 𝑠25
𝑡 ∶ 𝜽𝐹29𝑡 ,…,𝐹57𝑡 |𝑠2𝑡5

= {{𝜋𝑠25
𝑡

𝑖
, 𝝁𝑠25

𝑡

𝑖

, Σ𝑠25
𝑡

𝑖
}
𝑖=1

2

}) consists of two 

components, where  

𝜋𝑠25
𝑡

1
= 0.074127, 𝜋𝑠25

𝑡

2
= 0.925873, 

𝝁𝑠25
𝑡

1

= (

0.106692
0.515378
5.845092
83.085749

) , 𝝁𝑠25
𝑡

2

= (

0.551721
1.3502
6.150518
96.795931

), 

 Σ𝑠25
𝑡
1
= [

0.022973 0.008822 0.616934 0.191083
0.008822 0.35194 4.716452 1.415381
0.616934 4.716452 8516.85125 117.388605
0.191083 1.415381 117.388605 9370.889173

] , Σ𝑠25
𝑡
2
= [

0.023257 −0.004155 0.23269 0.915808
−0.004155 0.04612 −0.141575 −0.053543
0.23269 −0.141575 704.874544 19.305685
0.915808 −0.053543 19.305685 824.576939 

]. 

2.5 Parameters of the extended SAE Level 2 SAGAT Score Model 

For any number of time slices 𝑇 ≥ 1, the extended SAE Level 2 SAGAT Score model defines the JPD  

𝑝(𝑆2
1:𝑇 , 𝑭Rel

1:𝑇 , 𝐵1:𝑇 ∶ 𝜽) 

= 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1)∏𝑝(𝑆2

𝑡 | 𝑆2
𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡)

𝑇

𝑡=2

∏𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡)𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽)

𝑇

𝑡=1

, 

with 𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽) given by 

𝑝 (𝐹8
𝑡, 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡 |𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑆2𝑡,𝐵𝑡) 

𝑝 (𝐹27
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹27𝑡 |𝑆2𝑡,𝐵𝑡)𝑝 (𝐹47
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹47𝑡 |𝑆2𝑡,𝐵𝑡). 

As such, the model is defined by six probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel = {𝐹8, 𝐹13, 𝐹27, 𝐹32, 𝐹38, 𝐹42, 𝐹47, 𝐹53}  are provided in 

Table 9. 
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Table 28: The set of relevant indicators for the extended SAE Level 2 SAGAT Score model, 𝑭Rel =
{𝐹8, 𝐹13, 𝐹27, 𝐹32, 𝐹38, 𝐹42, 𝐹47, 𝐹53}. 

Symbol Name 

𝐹8 Blink frequency 

𝐹13 Yaw angle of the head variability 

𝐹27 Glance dura on variability 

𝐹32 Mean saccade frequency 

𝐹38 Mean  me since last look at left mirror AO  

𝐹42 Time since last look at right mirror AO  

𝐹47 Time since last look at the rear mirror AO  

𝐹53 Mean  me since last look at tachometer AO  

 

Distribution 𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) 
The distribution 𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) is a categorical distribution  

𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) = Cat(𝐵
𝑡 ∶ 𝜽𝐵𝑡) 

over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 𝑡 = 1, with MAP parameters  

𝜽𝐵𝑡 = {𝜃𝑏0𝑡 , 𝜃𝑏1𝑡 , 𝜃𝑏2𝑡} =
{0.324333, 0.324333, 0.351334}. 

Distribution 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1) 

The distribution 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 = 1  is a collection of categorical distributions with a 

categorical distribution  

𝑝(𝑆2
1 | 𝑏1 ∶ 𝜽𝑆21|𝑏1) = Cat(𝑆2

1 ∶ 𝜽𝑆21|𝑏1) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝑆21|𝐵1 = {𝜽𝑆21|𝑏01 , 𝜽𝑆21|𝑏11 , 𝜽𝑆21|𝑏21}, where 

𝜽𝑆21|𝑏01 = {𝜃𝑠20
1 |𝑏0

1 , 𝜃𝑠211|𝑏0
1 , 𝜃𝑠212|𝑏0

1 , 𝜃𝑠213|𝑏0
1 , 𝜃𝑠214|𝑏0

1 , 𝜃𝑠215|𝑏0
1}

= {0.000116, 0.000116, 0.499769, 0.333218, 0.166667, 0.000116}, 

𝜽𝑆21|𝑏11 = {𝜃𝑠20
1 |𝑏1

1 , 𝜃𝑠211|𝑏1
1 , 𝜃𝑠212|𝑏1

1 , 𝜃𝑠213|𝑏1
1 , 𝜃𝑠214|𝑏1

1 , 𝜃𝑠215|𝑏1
1}

= {0.249942, 0.249942, 0.416493, 0.083391, 0.000116, 0.000116}, 

𝜽𝑆21|𝑏21 = {𝜃𝑠20
1 |𝑏2

1 , 𝜃𝑠211|𝑏2
1 , 𝜃𝑠212|𝑏2

1 , 𝜃𝑠213|𝑏2
1 , 𝜃𝑠214|𝑏2

1 , 𝜃𝑠215|𝑏2
1}

= {0.153854, 0.076981, 0.307602, 0.307602, 0.000107, 0.153854}. 

Distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡) 

The distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 > 1  is a collection of categorical distributions with a 

categorical distribution 

𝑝 (𝑆2
𝑡|𝑠2

𝑡−1, 𝑏𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1,𝑏𝑡) = Cat (𝑆2
𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1,𝑏𝑡) 
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for each {𝑠2
𝑡−1, 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡 = {

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏0

𝑡 ,

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏1

𝑡 ,

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏2

𝑡

}, 

where 

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏0
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏0
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏0
𝑡}

= {0.000019, 0.000019, 0.999907, 0.000019, 0.000019, 0.000019}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏0
𝑡}

= {0.000028, 0.000028, 0.000028, 0.999861, 0.000028, 0.000028}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏0
𝑡}

= {0.000056, 0.000056, 0.000056, 0.000056, 0.999722, 0.000056}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏0
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏1
𝑡}

= {0.999815, 0.000037, 0.000037, 0.000037, 0.000037, 0.000037}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏1
𝑡}

= {0.000037, 0.999815, 0.000037, 0.000037, 0.000037, 0.000037}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏1
𝑡}

= {0.000022, 0.000022, 0.999889, 0.000022, 0.000022, 0.000022}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏1
𝑡}

= {0.000111, 0.000111, 0.000111, 0.999445, 0.000111, 0.000111}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏1
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏1
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏2
𝑡}

= {0.999722, 0.000056, 0.000056, 0.000056, 0.000056, 0.000056}, 
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𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏2
𝑡}

= {0.000111, 0.999445, 0.000111, 0.000111, 0.000111, 0.000111}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏2
𝑡}

= {0.000028, 0.000028, 0.999861, 0.000028, 0.000028, 0.000028}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏2
𝑡}

= {0.000028, 0.000028, 0.000028, 0.999861, 0.000028, 0.000028}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏2
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏2
𝑡}

= {0.000056, 0.000056, 0.000056, 0.000056, 0.000056, 0.999722}. 

Distribution 𝑝 (𝐹8
𝑡, 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡  | 𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹8𝑡 ,…,𝐹13𝑡 |𝑆2𝑡 ,𝐵𝑡) 

The distribution 𝑝 (𝐹8
𝑡 , 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡  | 𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑆2𝑡,𝐵𝑡) over a six-dimensional vector of 

continuous variables (𝐹8, 𝐹32, 𝐹38, 𝐹53, 𝐹42, 𝐹13)  at time slice 𝑡 ≥ 1  is a collection of multivariate 

Gaussian distributions with a multivariate Gaussian  

𝑝 (𝐹8
𝑡 , 𝐹32

𝑡 , 𝐹38
𝑡 , 𝐹53

𝑡 , 𝐹42
𝑡 , 𝐹13

𝑡  | 𝑠2
𝑡 , 𝑏𝑡  ∶ 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠2𝑡 ,𝑏𝑡) = 𝒩 (𝝁𝑠2𝑡|𝑏𝑡 𝑖

, Σ𝑠2𝑡|𝑏𝑡 𝑖
) 

for each {𝑠2
𝑡−1, 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑆2𝑡,𝐵𝑡

= {

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜽𝐹8𝑡 ,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}, 

where  

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 = {𝝁𝑠20
𝑡 ,𝑏0

𝑡 = 𝟎6, Σ𝑠20
𝑡 ,𝑏0

𝑡 = 𝐈6}, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 = {𝝁𝑠21
𝑡 ,𝑏0

𝑡 = 𝟎6, Σ𝑠21
𝑡 ,𝑏0

𝑡 = 𝐈6}, 

𝜽
(𝐹8
𝑡 , … , 𝐹13

𝑡
|𝑠22
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠22

𝑡 ,𝑏0
𝑡 , Σ𝑠22

𝑡 ,𝑏0
𝑡} , 𝝁𝑠22

𝑡 ,𝑏0
𝑡 =

(

  
 

0.424419
1.305315
38.157631
33.973369
400.917517
0.085536 )

  
 
, 

Σ𝑠22
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.08012 0.01353 4.773425 0.679966 7.767003 −0.003165
0.01353 0.184326 6.413222 5.082756 32.257262 0.008817
4.773425 6.413222 3816.150503 1970.305249 3061.573432 −2.157207
0.679966 5.082756 1970.305249 1465.422903 1650.50768 −0.338575
7.767003 32.257262 3061.573432 1650.50768 29156.98913 −3.28025
−0.003165 0.008817 −2.157207 −0.338575 −3.28025 0.008219 ]
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𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 = {𝝁𝑠23
𝑡 ,𝑏0

𝑡 , Σ𝑠23
𝑡 ,𝑏0

𝑡} , 𝝁𝑠23
𝑡 ,𝑏0

𝑡 =

(

 
 
 

0.5212
1.508461
14.974388
21.456281
287.951837
0.102731 )

 
 
 
, 

Σ𝑠23
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.083107 0.080643 −1.568247 0.142766 24.665862 −0.004086
0.080643 0.300815 −1.701552 3.219238 51.618697 −0.010963
−1.568247 −1.701552 770.829809 114.961942 −162.191101 0.042093
0.142766 3.219238 114.961942 379.280575 232.028474 0.443666
24.665862 51.618697 −162.191101 232.028474 19144.85645 −8.552253
−0.004086 −0.010963 0.042093 0.443666 −8.552253 0.007518 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 = {𝝁𝑠24
𝑡 ,𝑏0

𝑡 , Σ𝑠24
𝑡 ,𝑏0

𝑡} , 𝝁𝑠24
𝑡 ,𝑏0

𝑡 =

(

  
 

0.365028
0.880845
11.40316
33.699631
279.892362
0.098628 )

  
 
, 

Σ𝑠24
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.031643 0.034275 −0.138413 −0.70557 −16.328374 0.004836
0.034275 0.17404 −0.956192 −4.506297 −76.926188 0.032139
−0.138413 −0.956192 1031.345374 50.835047 736.218898 −0.27338
−0.70557 −4.506297 50.835047 517.842831 2592.088451 −1.218731
−16.328374 −76.926188 736.218898 2592.088451 46806.49236 −20.810504
0.004836 0.032139 −0.27338 −1.218731 −20.810504 0.011021 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 = {𝝁𝑠25
𝑡 ,𝑏0

𝑡 = 𝟎6, Σ𝑠25
𝑡 ,𝑏0

𝑡 = 𝐈6}, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 = {𝝁𝑠20
𝑡 ,𝑏1

𝑡 , Σ𝑠20
𝑡 ,𝑏1

𝑡} , 𝝁𝑠20
𝑡 ,𝑏1

𝑡 =

(

 
 
 

0.712513
1.500095
254.881257
104.404561
529.41021
0.024596 )

 
 
 
, 

Σ𝑠20
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.026269 −0.015893 11.840772 7.126603 0.543942 −0.000789
−0.015893 0.151122 −33.848399 −18.750072 −1.145235 0.002506
11.840772 −33.848399 33645.92329 21580.28805 2866.7418 −2.770175
7.126603 −18.750072 21580.28805 15742.75464 2676.920757 −1.785992
0.543942 −1.145235 2866.7418 2676.920757 1285.355495 −0.293091
−0.000789 0.002506 −2.770175 −1.785992 −0.293091 0.000696 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 = {𝝁𝑠21
𝑡 ,𝑏1

𝑡 , Σ𝑠21
𝑡 ,𝑏1

𝑡} , 𝝁𝑠21
𝑡 ,𝑏1

𝑡 =

(

  
 

1.077379
1.617362
372.978124
102.664786
424.021234
0.026269 )

  
 
, 

Σ𝑠21
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.638548 0.60877 21.206215 −73.954045 15.472882 0.006639
0.60877 0.802389 −58.007328 −102.485533 −40.515444 0.0125
21.206215 −58.007328 46622.50769 10973.58739 30379.16139 −2.709657
−73.954045 −102.485533 10973.58739 14095.61031 7642.354956 −1.868823
15.472882 −40.515444 30379.16139 7642.354956 22916.32658 −2.383629
0.006639 0.0125 −2.709657 −1.868823 −2.383629 0.000745 ]

 
 
 
 
 

, 
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𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 = {𝝁𝑠22
𝑡 ,𝑏1

𝑡 , Σ𝑠22
𝑡 ,𝑏1

𝑡} , 𝝁𝑠22
𝑡 ,𝑏1

𝑡 =

(

 
 
 

0.524986
1.029317
52.447886
33.819258
512.444059
0.023705 )

 
 
 
, 

Σ𝑠22
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.081357 −0.024643 12.234926 −1.586743 −0.001848 −0.000586
−0.024643 0.084981 −9.695691 −1.846891 0.90378 0.003889
12.234926 −9.695691 4336.306212 −94.552372 59.842235 −0.654056
−1.586743 −1.846891 −94.552372 1242.348315 −291.702711 −0.055757
−0.001848 0.90378 59.842235 −291.702711 612.719735 0.11626
−0.000586 0.003889 −0.654056 −0.055757 0.11626 0.000816 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 = {𝝁𝑠23
𝑡 ,𝑏1

𝑡 , Σ𝑠23
𝑡 ,𝑏1

𝑡} , 𝝁𝑠23
𝑡 ,𝑏1

𝑡 =

(

  
 

0.524065
0.848716
240.976701
40.204648
508.421396
0.007134 )

  
 
, 

Σ𝑠23
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.033312 0.007131 0.217141 0.321921 0.216393 0.000071
0.007131 0.036288 0.24994 0.813203 0.24594 0.000289
0.217141 0.24994 2041.394889 54.815012 133.967896 −0.047402
0.321921 0.813203 54.815012 633.744263 54.632127 0.009604
0.216393 0.24594 133.967896 54.632127 1630.313101 −0.047807
0.000071 0.000289 −0.047402 0.009604 −0.047807 0.000519 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 = {𝝁𝑠24
𝑡 ,𝑏1

𝑡 = 𝟎6, Σ𝑠24
𝑡 ,𝑏1

𝑡 = 𝐈6}, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 = {𝝁𝑠25
𝑡 ,𝑏1

𝑡 = 𝟎6, Σ𝑠25
𝑡 ,𝑏1

𝑡 = 𝐈6}, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 = {𝝁𝑠20
𝑡 ,𝑏2

𝑡 , Σ𝑠20
𝑡 ,𝑏2

𝑡} , 𝝁𝑠20
𝑡 ,𝑏2

𝑡 =

(

 
 
 

0.915163
2.839784
522.866656
272.233593
528.552035
0.028492 )

 
 
 
, 

Σ𝑠20
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.358406 −0.125455 1.138115 −123.491444 0.964548 0.006221
−0.125455 0.234388 −1.24156 90.802581 −2.097379 −0.001503
1.138115 −1.24156 1457.144625 −926.892732 229.330514 −0.050268

−123.491444 90.802581 −926.892732 60759.00382 −1063.812638 −1.876293
0.964548 −2.097379 229.330514 −1063.812638 893.275635 −0.011941
0.006221 −0.001503 −0.050268 −1.876293 −0.011941 0.000598 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 = {𝝁𝑠21
𝑡 ,𝑏2

𝑡 , Σ𝑠21
𝑡 ,𝑏2

𝑡} , 𝝁𝑠21
𝑡 ,𝑏2

𝑡 =

(

  
 

0.458416
1.885947
512.886418
223.546736
519.263473
0.036328 )

  
 
, 

Σ𝑠21
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.040195 0.039047 −1.259074 −1.008431 −0.974184 0.002422
0.039047 0.120922 −1.743955 −2.084043 −2.130509 0.006721
−1.259074 −1.743955 2738.40527 372.124306 309.505577 −0.236262
−1.008431 −2.084043 372.124306 744.758026 166.905586 −0.178691
−0.974184 −2.130509 309.505577 166.905586 1643.204229 −0.170825
0.002422 0.006721 −0.236262 −0.178691 −0.170825 0.001543 ]

 
 
 
 
 

, 
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𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 = {𝝁𝑠22
𝑡 ,𝑏2

𝑡 , Σ𝑠22
𝑡 ,𝑏2

𝑡} , 𝝁𝑠22
𝑡 ,𝑏2

𝑡 =

(

  
 

0.376102
2.338862
33.973608
80.780846
301.224215
0.12992 )

  
 
, 

Σ𝑠22
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.08629 −0.02481 −3.26245 −4.395125 −36.946268 0.0232
−0.02481 0.089806 −3.356181 10.732843 14.077324 −0.011763
−3.26245 −3.356181 1161.750949 −672.03049 1878.467625 −0.842032
−4.395125 10.732843 −672.03049 2632.146546 4546.092859 −2.061812
−36.946268 14.077324 1878.467625 4546.092859 40148.1453 −13.455166
0.0232 −0.011763 −0.842032 −2.061812 −13.455166 0.014601 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 = {𝝁𝑠23
𝑡 ,𝑏2

𝑡 , Σ𝑠23
𝑡 ,𝑏2

𝑡} , 𝝁𝑠23
𝑡 ,𝑏2

𝑡 =

(

  
 

1.366229
1.950829
145.771333
81.486465
429.698911
0.186115 )

  
 
, 

Σ𝑠23
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 

1.05745 0.016268 −113.340742 41.067913 −41.103432 0.069196
0.016268 0.07637 −9.541527 2.424336 −10.764504 0.004542

−113.340742 −9.541527 33787.49809 −4087.866937 3187.316137 −14.747715
41.067913 2.424336 −4087.866937 2115.332941 −2683.279154 3.257159
−41.103432 −10.764504 3187.316137 −2683.279154 15265.48829 −8.1969
0.069196 0.004542 −14.747715 3.257159 −8.1969 0.011902 ]

 
 
 
 
 

, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 = {𝝁𝑠24
𝑡 ,𝑏2

𝑡 = 𝟎6, Σ𝑠24
𝑡 ,𝑏2

𝑡 = 𝐈6}, 

𝜽𝐹8𝑡,…,𝐹13𝑡 |𝑠25
𝑡 ,𝑏2

𝑡 = {𝝁𝑠25
𝑡 ,𝑏2

𝑡 , Σ𝑠25
𝑡 ,𝑏2

𝑡} , 𝝁𝑠25
𝑡 ,𝑏2

𝑡 =

(

  
 

0.731486
1.85648
14.172817
81.072865
158.887783
0.171135 )

  
 
, 

Σ𝑠25
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.116967 −0.022933 2.621197 0.115619 7.143726 0.003787
−0.022933 0.195368 −0.553685 14.544871 −9.534996 0.007822
2.621197 −0.553685 1088.978694 −49.870141 286.530303 0.004979
0.115619 14.544871 −49.870141 2168.699698 −1128.126578 1.401465
7.143726 −9.534996 286.530303 −1128.126578 2276.087348 −0.904149
0.003787 0.007822 0.004979 1.401465 −0.904149 0.003502 ]

 
 
 
 
 

. 

Distribution 𝑝 (𝐹27
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹27𝑡 |𝑆2𝑡 ,𝐵𝑡) 

The distribution 𝑝 (𝐹27
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹27𝑡 |𝑆2𝑡,𝐵𝑡) over the continuous variable 𝐹27 at time slice 𝑡 ≥ 1 is a 

collection of exponential distributions with an exponential distribution 

𝑝 (𝐹27
𝑡  | 𝑠2

𝑡 , 𝑏𝑡 ∶ 𝜆𝐹27𝑡 |𝑠2𝑡 ,𝑏𝑡) = Expon (𝐹27
𝑡 ∶ 𝜆𝐹27𝑡 |𝑠2𝑡 ,𝑏𝑡) 

for each {𝑠2
𝑡 , 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  
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𝜽𝐹27𝑡 |𝑆2𝑡−1,𝐵𝑡 = {

𝜆𝐹27𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜆𝐹27𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜆𝐹27𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜆𝐹27𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜆𝐹27𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜆𝐹27𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜆𝐹27𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜆𝐹27𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜆𝐹27𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜆𝐹27𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜆𝐹27𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜆𝐹27𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜆𝐹27𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜆𝐹27𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜆𝐹27𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜆𝐹27𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜆𝐹27𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜆𝐹27𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}

= {
0.583943, 0.583943, 0.83865, 1.206156, 0.376448, 0.583943,
0.501114, 0.324152, 0.296224, 0.259526, 0.583943, 0.583943,
9.790407, 5.825088, 5.291385, 5.497436, 0.583943, 1.141708

}. 

Distribution 𝑝 (𝐹47
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹27𝑡 |𝑆2𝑡,𝐵𝑡) 

The distribution 𝑝 (𝐹47
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹27𝑡 |𝑆2𝑡,𝐵𝑡) over the continuous variable 𝐹47  at time slice 𝑡 ≥ 1 is a 

collection of exponential distributions with an exponential distribution 

𝑝 (𝐹47
𝑡  | 𝑠2

𝑡 , 𝑏𝑡 ∶ 𝜆𝐹47𝑡 |𝑠2𝑡 ,𝑏𝑡) = Expon (𝐹47
𝑡 ∶ 𝜆𝐹47𝑡 |𝑠2𝑡 ,𝑏𝑡) 

for each {𝑠2
𝑡 , 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝐹47𝑡 |𝑆2𝑡−1,𝐵𝑡 = {

𝜆𝐹47𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜆𝐹47𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜆𝐹47𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜆𝐹47𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜆𝐹47𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜆𝐹47𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜆𝐹47𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜆𝐹47𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜆𝐹47𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜆𝐹47𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜆𝐹47𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜆𝐹47𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜆𝐹47𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜆𝐹47𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜆𝐹47𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜆𝐹47𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜆𝐹47𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜆𝐹47𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}

= {
0.011602, 0.011602, 0.048626, 0.133335, .035936, 0.011602,
0.004304, 0.019260, 0.007216, 0.064874, 0.011602, 0.011602,
0.001893, 0.007976, 0.078177, 0.04165, 0.011602, 0.024549

}. 

2.6 Parameters of the extended SAE Level 3 SAGAT Score Model 

For any number of time slices 𝑇 ≥ 1, the extended SAE Level 3 SAGAT Score model defines the JPD  

𝑝(𝑆2
1:𝑇 , 𝑭Rel

1:𝑇 , 𝐵1:𝑇 ∶ 𝜽) 

= 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1)∏𝑝(𝑆2

𝑡 | 𝑆2
𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡)

𝑇

𝑡=2

∏𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡)𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽)

𝑇

𝑡=1

, 

with 𝑝(𝑭Rel
𝑡  | 𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽) given by 

𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹37
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 |𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑆2𝑡,𝐵𝑡)𝑝 (𝐹16

𝑡 |𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹16𝑡 |𝑆2𝑡,𝐵𝑡) 

𝑝 (𝐹32
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹32𝑡 |𝑆2𝑡,𝐵𝑡)𝑝 (𝐹67
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹67𝑡 |𝑆2𝑡,𝐵𝑡). 

As such, the model is defined by seven probability /density distribution to be detailed in the following. 

The names of the relevant indicators 𝑭Rel = {𝐹9, 𝐹16, 𝐹29, 𝐹32, 𝐹37, 𝐹43, 𝐹48, 𝐹58, 𝐹67} are provided in 

Table 29. 

Table 29: The set of relevant indicators for the SAE Level 2 NDRT model, 𝑭Rel = {𝐹9, 𝐹16, 𝐹29, 𝐹32, 𝐹37, 𝐹43, 𝐹48, 𝐹58, 𝐹67}. 

Symbol Name 

𝐹9 Mean blink frequency 

𝐹16 Yaw rate of the head variability 

𝐹29 Mean monitoring frequency 

𝐹32 Mean saccade frequency 

𝐹37 Time since last look at left mirror AO  
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𝐹43 Mean  me since last look at right mirror AO  

𝐹48 Mean  me since last look at rear mirror AO  

𝐹58 Mean  me since last look at infotainment AO  

𝐹67 Time since last look at other AO  

 

Distribution 𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) 
The distribution 𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) is a categorical distribution  

𝑝(𝐵𝑡 ∶ 𝜽𝐵𝑡) = Cat(𝐵
𝑡 ∶ 𝜽𝐵𝑡) 

over the discrete variable 𝐵, Val(𝐵) = {𝑏0, 𝑏1, 𝑏2} at time slice 𝑡 = 1, with MAP parameters  

𝜽𝐵𝑡 = {𝜃𝑏0𝑡 , 𝜃𝑏1𝑡 , 𝜃𝑏2𝑡} =
{0.351334, 0.324333, 0.324333}. 

Distribution 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1) 

The distribution 𝑝(𝑆2
1 | 𝐵1 ∶ 𝜽𝑆21|𝐵1)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 = 1  is a collection of categorical distributions with a 

categorical distribution  

𝑝(𝑆2
1 | 𝑏1 ∶ 𝜽𝑆21|𝑏1) = Cat(𝑆2

1 ∶ 𝜽𝑆21|𝑏1) 

for each 𝑏𝑡 ∈ Val(𝐵), parameterized with MAP parameters 𝜽𝑆21|𝐵1 = {𝜽𝑆21|𝑏01 , 𝜽𝑆21|𝑏11 , 𝜽𝑆21|𝑏21}, where 

𝜽𝑆21|𝑏01 = {𝜃𝑠20
1 |𝑏0

1 , 𝜃𝑠211|𝑏0
1 , 𝜃𝑠212|𝑏0

1 , 𝜃𝑠213|𝑏0
1 , 𝜃𝑠214|𝑏0

1 , 𝜃𝑠215|𝑏0
1}

= {0.000107, 0.153854, 0.076981, 0.230779, 0.461298, 0.076981}, 

𝜽𝑆21|𝑏11 = {𝜃𝑠20
1 |𝑏1

1 , 𝜃𝑠211|𝑏1
1 , 𝜃𝑠212|𝑏1

1 , 𝜃𝑠213|𝑏1
1 , 𝜃𝑠214|𝑏1

1 , 𝜃𝑠215|𝑏1
1}

= {0.333218, 0.249942, 0.166667, 0.166667, 0.083391, 0.000116}, 

𝜽𝑆21|𝑏21 = {𝜃𝑠20
1 |𝑏2

1 , 𝜃𝑠211|𝑏2
1 , 𝜃𝑠212|𝑏2

1 , 𝜃𝑠213|𝑏2
1 , 𝜃𝑠214|𝑏2

1 , 𝜃𝑠215|𝑏2
1}

= {0.416493, 0.166667, 0.249942, 0.083391, 0.083391, 0.000116}. 

Distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡) 

The distribution 𝑝 (𝑆2
𝑡 | 𝑆2

𝑡−1, 𝐵𝑡 ∶ 𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡)  over the discrete variable 𝑆2, Val(𝑆2) =

{𝑠20, 𝑠21, 𝑠22, 𝑠23, 𝑠24, 𝑠25}  at time slice 𝑡 > 1  is a collection of categorical distributions with a 

categorical distribution 

𝑝 (𝑆2
𝑡|𝑠2

𝑡−1, 𝑏𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1,𝑏𝑡) = Cat (𝑆2
𝑡 ∶ 𝜽𝑆2𝑡|𝑠2𝑡−1,𝑏𝑡) 

for each {𝑠2
𝑡−1, 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝑆2𝑡|𝑆2𝑡−1,𝐵𝑡 = {

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏0

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏0

𝑡 ,

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏1

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏1

𝑡 ,

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏2

𝑡 , 𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏2

𝑡

}, 

where 
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𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏0
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏0
𝑡}

= {0.000056, 0.999722, 0.000056, 0.000056, 0.000056, 0.000056}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏0
𝑡}

= {0.000111, 0.000111, 0.999445, 0.000111, 0.000111, 0.000111}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏0
𝑡}

= {0.000037, 0.000037, 0.000037, 0.999815, 0.000037, 0.000037}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏0
𝑡}

= {0.000019, 0.000019, 0.000019, 0.000019, 0.999907, 0.000019}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏0

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏0
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏0
𝑡}

= {0.000111, 0.000111, 0.000111, 0.000111, 0.000111, 0.999445}, 

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏1
𝑡}

= {0.999861, 0.000028, 0.000028, 0.000028, 0.000028, 0.000028}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏1
𝑡}

= {0.000037, 0.999815, 0.000037, 0.000037, 0.000037, 0.000037}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏1
𝑡}

= {0.000056, 0.000056, 0.999722, 0.000056, 0.000056, 0.000056}, 

𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏1
𝑡}

= {0.000056, 0.000056, 0.000056, 0.999722, 0.000056, 0.000056}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏1
𝑡}

= {0.000111, 0.000111, 0.000111, 0.000111, 0.999445, 0.000111}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏1

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏1
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏1
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}, 

𝜽𝑆2𝑡|𝑠20
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠20

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠20

𝑡−1,𝑏2
𝑡}

= {0.999889, 0.000022, 0.000022, 0.000022, 0.000022, 0.000022}, 

𝜽𝑆2𝑡|𝑠21
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠21

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠21

𝑡−1,𝑏2
𝑡}

= {0.000056, 0.999722, 0.000056, 0.000056, 0.000056, 0.000056}, 

𝜽𝑆2𝑡|𝑠22
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠22

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠22

𝑡−1,𝑏2
𝑡}

= {0.000037, 0.000037, 0.999815, 0.000037, 0.000037, 0.000037}, 
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𝜽𝑆2𝑡|𝑠23
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠23

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠23

𝑡−1,𝑏2
𝑡}

= {0.000111, 0.000111, 0.000111, 0.999445, 0.000111, 0.000111}, 

𝜽𝑆2𝑡|𝑠24
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠24

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠24

𝑡−1,𝑏2
𝑡}

= {0.000111, 0.000111, 0.000111, 0.000111, 0.999445, 0.000111}, 

𝜽𝑆2𝑡|𝑠25
𝑡−1,𝑏2

𝑡 = {𝜃𝑠20
𝑡 |𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡1|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡2|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡3|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡4|𝑠25

𝑡−1,𝑏2
𝑡 , 𝜃𝑠2𝑡5|𝑠25

𝑡−1,𝑏2
𝑡}

= {0.166667, 0.166667, 0.166667, 0.166667, 0.166667, 0.166667}. 

Distribution p (F9
t , F29

t , F37
t , F58

t , F48
t , F43

t |S2
t , Bt ∶ 𝛉F9t ,…,F43t |S2t ,Bt) 

The distribution 𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹37
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡 |𝑆2
𝑡, 𝐵𝑡 ∶ 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑆2𝑡,𝐵𝑡) over a six-dimensional vector of 

continuous variables (𝐹9, 𝐹29, 𝐹37, 𝐹58, 𝐹48, 𝐹43)  at time slice 𝑡 ≥ 1  is a collection of multivariate 

Gaussian distributions with a multivariate Gaussian  

𝑝 (𝐹9
𝑡 , 𝐹29

𝑡 , 𝐹37
𝑡 , 𝐹58

𝑡 , 𝐹48
𝑡 , 𝐹43

𝑡  | 𝑠2
𝑡 , 𝑏𝑡  ∶ 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠2𝑡 ,𝑏𝑡) = 𝒩 (𝝁𝑠2𝑡|𝑏𝑡 𝑖

, Σ𝑠2𝑡|𝑏𝑡𝑖
) 

for each {𝑠2
𝑡−1, 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑆2𝑡,𝐵𝑡

= {

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜽𝐹9𝑡 ,…,𝐹43𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}, 

where  

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 = {𝝁𝑠20
𝑡 ,𝑏0

𝑡 = 𝟎6, Σ𝑠20
𝑡 ,𝑏0

𝑡 = 𝐈6}, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠21
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠21

𝑡 ,𝑏0
𝑡 , Σ𝑠21

𝑡 ,𝑏0
𝑡} , 𝝁𝑠21

𝑡 ,𝑏0
𝑡 =

(

  
 

0.25416
0.206493
19.739553
20.801873
33.146397
268.312292)

  
 
, 

Σ𝑠21
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.021664 0.011189 −0.996966 −0.153596 −1.20389 −2.108719

0.011189 0.014358 −1.227966 −0.506122 −1.919624 −4.918942

−0.996966 −1.227966 806.477585 189.908541 220.089933 −95.177338

−0.153596 −0.506122 189.908541 644.533419 97.99755 −204.852486

−1.20389 −1.919624 220.089933 97.99755 761.229456 976.268992

−2.108719 −4.918942 −95.177338 −204.852486 976.268992 5435.290231]
 
 
 
 
 

 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠22
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠22

𝑡 ,𝑏0
𝑡 , Σ𝑠22

𝑡 ,𝑏0
𝑡} , 𝝁𝑠22

𝑡 ,𝑏0
𝑡 =

(

  
 

0.142942
0.418991
7.489884
30.799829
8.777225
379.772007)

  
 
, 



DySAM (Dynamische Erfassung und Beurteilung von Situationsbewusstsein im Kontext des automatisierten Fahrens)  
(Dynamic assessment and evaluation of situational awareness in the context of automated driving) 

 

177 
 

Σ𝑠22
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.015559 −0.005773 0.172442 −0.14071 0.31914 −0.608281
−0.005773 0.014966 −0.032715 0.483853 −0.48481 0.598988
0.172442 −0.032715 861.858642 29.946693 34.521898 −50.90591
−0.14071 0.483853 29.946693 967.491978 13.723146 10.415277
0.31914 −0.48481 34.521898 13.723146 831.88557 −52.674455
−0.608281 0.598988 −50.90591 10.415277 −52.674455 754.618703]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠23
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠23

𝑡 ,𝑏0
𝑡 , Σ𝑠23

𝑡 ,𝑏0
𝑡} , 𝝁𝑠23

𝑡 ,𝑏0
𝑡 =

(

 
 
 

0.473825
0.364269
28.809672
23.857914
10.557547
237.164465)

 
 
 
, 

Σ𝑠23
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.029737 −0.008313 −0.268651 −0.550772 −0.358145 13.953635
−0.008313 0.050338 −2.401457 0.718546 −0.870473 11.155746
−0.268651 −2.401457 492.673413 −25.412124 70.051296 −1255.937296
−0.550772 0.718546 −25.412124 869.433086 0.733184 −774.906122
−0.358145 −0.870473 70.051296 0.733184 315.744478 −552.235336
13.953635 11.155746 −1255.937296 −774.906122 −552.235336 20866.00079 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠24
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠24

𝑡 ,𝑏0
𝑡 , Σ𝑠24

𝑡 ,𝑏0
𝑡} , 𝝁𝑠24

𝑡 ,𝑏0
𝑡 =

(

  
 

0.39457
0.373188
24.148939
138.481251
19.114328
285.963803)

  
 
, 

Σ𝑠24
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.033501 0.01916 −1.942912 12.317297 −0.284933 1.353682
0.01916 0.04867 −2.462218 −2.719917 −2.819569 10.177529
−1.942912 −2.462218 723.685007 −1260.496957 95.313907 −669.628314
12.317297 −2.719917 −1260.496957 15123.09615 189.483076 2359.948821
−0.284933 −2.819569 95.313907 189.483076 554.239458 −1878.363915
1.353682 10.177529 −669.628314 2359.948821 −1878.363915 10797.43962 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠25
𝑡 , 𝑏0

𝑡
)
= {𝝁𝑠25

𝑡 ,𝑏0
𝑡 , Σ𝑠25

𝑡 ,𝑏0
𝑡} , 𝝁𝑠25

𝑡 ,𝑏0
𝑡 =

(

  
 

0.412906
0.517721
5.900671
90.72619
7.290656
110.274789)

  
 
, 

Σ𝑠25
𝑡 ,𝑏0

𝑡 =

[
 
 
 
 
 
0.081413 0.01742 0.349533 0.664036 0.24013 1.728873
0.01742 0.035951 0.332084 1.293921 −0.390324 0.483444
0.349533 0.332084 859.482656 25.943369 35.392346 80.032522
0.664036 1.293921 25.943369 965.747175 −10.019212 43.181929
0.24013 −0.390324 35.392346 −10.019212 827.129709 65.310913
1.728873 0.483444 80.032522 43.181929 65.310913 864.928902]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠20
𝑡 , 𝑏1

𝑡
)
= {𝝁𝑠20

𝑡 ,𝑏1
𝑡 , Σ𝑠20

𝑡 ,𝑏1
𝑡} , 𝝁𝑠20

𝑡 ,𝑏1
𝑡 =

(

  
 

0.595107
0.232422
90.401967
234.905145
87.606857
339.79358 )

  
 
, 
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Σ𝑠20
𝑡 ,𝑏1

𝑡

=

[
 
 
 
 
 
0.140894 −0.012344 −15.230819 17.587954 −16.173299 −1.803888
−0.012344 0.033541 −15.216234 −15.092331 −14.986473 4.72856
−15.230819 −15.216234 16831.0998 4985.349171 16348.97782 −2297.710775
17.587954 −15.092331 4985.349171 14328.5032 5004.030842 −4095.468835
−16.173299 −14.986473 16348.97782 5004.030842 16441.93591 −2335.837053
−1.803888 4.72856 −2297.710775 −4095.468835 −2335.837053 1565.743631 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠21
𝑡 , 𝑏1

𝑡
)
= {𝝁𝑠21

𝑡 ,𝑏1
𝑡 , Σ𝑠21

𝑡 ,𝑏1
𝑡} , 𝝁𝑠21

𝑡 ,𝑏1
𝑡 =

(

 
 
 

0.738945
0.172137
173.345836
263.914319
142.318901
313.910715)

 
 
 
, 

Σ𝑠21
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.159557 0.010595 43.944285 7.589395 32.008288 14.066987
0.010595 0.007552 9.477462 5.616635 11.557152 2.470735
43.944285 9.477462 22686.9873 9338.124775 22673.28104 6441.469264
7.589395 5.616635 9338.124775 6482.986216 12003.72706 2544.731919
32.008288 11.557152 22673.28104 12003.72706 26134.53842 6338.091277
14.066987 2.470735 6441.469264 2544.731919 6338.091277 2134.596132]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠22
𝑡 , 𝑏1

𝑡
)
= {𝝁𝑠22

𝑡 ,𝑏1
𝑡 , Σ𝑠22

𝑡 ,𝑏1
𝑡} , 𝝁𝑠22

𝑡 ,𝑏1
𝑡 =

(

  
 

0.231236
0.323838
12.920803
243.007166
174.34943
174.956048)

  
 
, 

Σ𝑠22
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.024237 0.027957 −0.319945 −9.955709 −18.301109 −18.091668
0.027957 0.09526 −1.66069 −19.145809 −38.173754 −38.198766
−0.319945 −1.66069 511.83414 237.750829 504.357273 545.426078
−9.955709 −19.145809 237.750829 8530.134555 14990.58837 14912.00879
−18.301109 −38.173754 504.357273 14990.58837 28433.60766 27978.48322
−18.091668 −38.198766 545.426078 14912.00879 27978.48322 28333.25558]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠23
𝑡 , 𝑏1

𝑡
)
= {𝝁𝑠23

𝑡 ,𝑏1
𝑡 , Σ𝑠23

𝑡 ,𝑏1
𝑡} , 𝝁𝑠23

𝑡 ,𝑏1
𝑡 =

(

  
 

0.795342
0.247887
18.195552
182.408735
10.043302
196.429265)

  
 
, 

Σ𝑠23
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.10742 0.013033 3.377493 37.374425 −1.84495 −43.915537
0.013033 0.009629 0.246827 4.008596 −0.512561 −4.936444
3.377493 0.246827 641.573267 1088.027853 −33.239301 −1331.726652
37.374425 4.008596 1088.027853 15098.11576 −614.329686 −16786.58226
−1.84495 −0.512561 −33.239301 −614.329686 464.409421 779.493917
−43.915537 −4.936444 −1331.726652 −16786.58226 779.493917 19891.54877 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠24
𝑡 , 𝑏1

𝑡
)
= {𝝁𝑠24

𝑡 ,𝑏1
𝑡 , Σ𝑠24

𝑡 ,𝑏1
𝑡} , 𝝁𝑠24

𝑡 ,𝑏1
𝑡 =

(

  
 

0.634893
0.009772
122.404276
302.298016
305.327392
326.126765)

  
 
, 
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Σ𝑠24
𝑡 ,𝑏1

𝑡 =

[
 
 
 
 
 
0.014806 −0.000021 −0.396602 −0.359113 −0.353525 −0.393714

−0.000021 0.002432 −0.042878 −0.240838 −0.270348 −0.05813

−0.396602 −0.042878 883.705816 106.41717 110.454865 81.418118

−0.359113 −0.240838 106.41717 1166.858757 302.09783 119.537618

−0.353525 −0.270348 110.454865 302.09783 1116.113226 125.22009

−0.393714 −0.05813 81.418118 119.537618 125.22009 705.886129]
 
 
 
 
 

 

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 = {𝝁𝑠25
𝑡 ,𝑏1

𝑡 = 𝟎6, Σ𝑠25
𝑡 ,𝑏1

𝑡 = 𝐈6}, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠20
𝑡 , 𝑏2

𝑡
)
= {𝝁𝑠20

𝑡 ,𝑏2
𝑡 , Σ𝑠20

𝑡 ,𝑏2
𝑡} , 𝝁𝑠20

𝑡 ,𝑏2
𝑡 =

(

  
 

0.830996
0.090047
292.783443
0.447627
158.004356
329.6378 )

  
 
, 

Σ𝑠20
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.357915 0.007631 15.743036 0.086074 44.785055 3.441359
0.007631 0.009826 −2.570279 0.0435 −4.94363 −0.269057
15.743036 −2.570279 3449.412216 −24.530217 4226.350474 643.288114
0.086074 0.0435 −24.530217 191.819296 −20.793373 −5.806066
44.785055 −4.94363 4226.350474 −20.793373 14688.23939 761.456447
3.441359 −0.269057 643.288114 −5.806066 761.456447 302.306021]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠21
𝑡 , 𝑏2

𝑡
)
= {𝝁𝑠21

𝑡 ,𝑏2
𝑡 , Σ𝑠21

𝑡 ,𝑏2
𝑡} , 𝝁𝑠21

𝑡 ,𝑏2
𝑡 =

(

 
 
 

0.85674
0.107999
37.783104
0.408832
273.234789
323.42079 )

 
 
 
, 

Σ𝑠21
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.658764 0.020224 −21.082992 −0.007118 47.658595 11.940192
0.020224 0.003707 −0.682411 0.03931 1.176215 0.418258
−21.082992 −0.682411 1183.315136 12.982466 −1559.791637 −340.539708
−0.007118 0.03931 12.982466 477.618297 −48.349075 −10.263017
47.658595 1.176215 −1559.791637 −48.349075 4317.18863 965.598977
11.940192 0.418258 −340.539708 −10.263017 965.598977 607.313353 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠22
𝑡 , 𝑏2

𝑡
)
= {𝝁𝑠22

𝑡 ,𝑏2
𝑡 , Σ𝑠22

𝑡 ,𝑏2
𝑡} , 𝝁𝑠22

𝑡 ,𝑏2
𝑡 =

(

  
 

1.103645
0.189355
146.244457
0.570633
39.062319
330.208372)

  
 
, 

Σ𝑠22
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.166934 −0.03969 −8.107871 −0.135273 14.005111 2.109467
−0.03969 0.017391 10.009421 0.01639 −5.065516 −0.444925
−8.107871 10.009421 23908.69712 −20.506435 −2353.799037 1081.35742
−0.135273 0.01639 −20.506435 318.963941 4.622211 −10.49249
14.005111 −5.065516 −2353.799037 4.622211 2352.797466 343.372568
2.109467 −0.444925 1081.35742 −10.49249 343.372568 502.52761 ]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡 , … , 𝐹43

𝑡
|𝑠23
𝑡 , 𝑏2

𝑡
)
= {𝝁𝑠23

𝑡 ,𝑏2
𝑡 , Σ𝑠23

𝑡 ,𝑏2
𝑡} , 𝝁𝑠23

𝑡 ,𝑏2
𝑡 =

(

  
 

0.333467
0.079297
36.979923
0.954912
10.832667
29.548558)

  
 
, 
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Σ𝑠23
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.022864 −0.001125 0.519519 0.169205 0.016895 0.791646
−0.001125 0.005346 −0.107511 0.086557 −0.083356 0.058438
0.519519 −0.107511 894.25402 33.070347 16.259848 147.112603
0.169205 0.086557 33.070347 949.829709 41.576117 144.662086
0.016895 −0.083356 16.259848 41.576117 826.730276 94.848443
0.791646 0.058438 147.112603 144.662086 94.848443 1034.903459]

 
 
 
 
 

, 

𝜽
(𝐹9
𝑡, … , 𝐹43

𝑡
|𝑠24
𝑡 , 𝑏2

𝑡
)
= {𝝁𝑠24

𝑡 ,𝑏2
𝑡 , Σ𝑠24

𝑡 ,𝑏2
𝑡} , 𝝁𝑠24

𝑡 ,𝑏2
𝑡 =

(

 
 
 

0.252823
0.170498
15.317519
0.842103
17.282309
311.126797)

 
 
 
, 

Σ𝑠24
𝑡 ,𝑏2

𝑡 =

[
 
 
 
 
 
0.016896 0.00214 −0.010996 0.193791 −0.076299 −0.337917

0.00214 0.003884 0.141538 0.040482 −0.109133 −0.328413

−0.010996 0.141538 908.860054 42.783626 30.791135 −30.694725

0.193791 0.040482 42.783626 949.861235 37.798671 −17.025377

−0.076299 −0.109133 30.791135 37.798671 857.393711 26.941589

−0.337917 −0.328413 −30.694725 −17.025377 26.941589 700.119449 ]
 
 
 
 
 

, 

𝜽𝐹9𝑡,…,𝐹43𝑡 |𝑠25
𝑡 ,𝑏2

𝑡 = {𝝁𝑠25
𝑡 ,𝑏2

𝑡 = 𝟎6, Σ𝑠25
𝑡 ,𝑏2

𝑡 = 𝐈6}. 

Distribution p (F16
t |S2

t , Bt ∶ 𝛉F16t |S2t ,Bt) 

The distribution 𝑝 (𝐹16
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹16𝑡 |𝑆2𝑡,𝐵𝑡) over the continuous variable 𝐹16  at time slice 𝑡 ≥ 1 is a 

collection of exponential distributions with an exponential distribution 

𝑝 (𝐹16
𝑡  | 𝑠2

𝑡 , 𝑏𝑡 ∶ 𝜆𝐹16𝑡 |𝑠2𝑡 ,𝑏𝑡) = Expon (𝐹16
𝑡 ∶ 𝜆𝐹27𝑡 |𝑠2𝑡 ,𝑏𝑡) 

for each {𝑠2
𝑡 , 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝐹16𝑡 |𝑆2𝑡−1,𝐵𝑡 = {

𝜆𝐹16𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜆𝐹16𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜆𝐹16𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜆𝐹16𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜆𝐹16𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜆𝐹16𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜆𝐹16𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜆𝐹16𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜆𝐹16𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜆𝐹16𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜆𝐹16𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜆𝐹16𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜆𝐹16𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜆𝐹16𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜆𝐹16𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜆𝐹16𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜆𝐹16𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜆𝐹16𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}

= {
1.802294, 3.898802, 6.793419, 8.56839, 6.293131, 2.838265,
8.153475, 7.438100, 3.772352, 4.837875, 16.684276, 1.802294,
1.607410, 1.430535, 2.237311, 3.569599, 5.083055, 1.802294

}. 

Distribution p (F32
t |S2

t , Bt ∶ 𝛉F32t |S2t ,Bt) 

The distribution 𝑝 (𝐹32
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹32𝑡 |𝑆2𝑡,𝐵𝑡) over the continuous variable 𝐹32  at time slice 𝑡 ≥ 1 is a 

collection of Gaussian distributions with Gaussian distribution 

𝑝 (𝐹32
𝑡  | 𝑠2

𝑡 , 𝑏𝑡 ∶ 𝜽𝐹47𝑡 |𝑠2𝑡 ,𝑏𝑡) = 𝒩 (𝜇𝑠2𝑡|𝑏𝑡 𝑖
, σ
𝑠2
𝑡|𝑏𝑡
2

𝑖
) 

for each {𝑠2
𝑡 , 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  

𝜽𝐹32𝑡 |𝑆2𝑡−1,𝐵𝑡 = {

𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}, 

where  
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𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 = {𝜇𝑠20
𝑡 ,𝑏0

𝑡 = 0, σ
𝑠20
𝑡 ,𝑏0

𝑡
2 = 1}, 

𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 = {𝜇𝑠21
𝑡 ,𝑏0

𝑡 = 0.931409, σ
𝑠21
𝑡 ,𝑏0

𝑡
2 = 0.212766}, 

𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 = {𝜇𝑠22
𝑡 ,𝑏0

𝑡 = 0.67003, σ
𝑠22
𝑡 ,𝑏0

𝑡
2 = 7.866056}, 

𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 = {𝜇𝑠23
𝑡 ,𝑏0

𝑡 = 1.289185, σ
𝑠23
𝑡 ,𝑏0

𝑡
2 = 0.06671}, 

𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 = {𝜇𝑠24
𝑡 ,𝑏0

𝑡 = 1.297627, σ
𝑠24
𝑡 ,𝑏0

𝑡
2 = 0.263065}, 

𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 = {𝜇𝑠25
𝑡 ,𝑏0

𝑡 = 1.117723, σ
𝑠25
𝑡 ,𝑏0

𝑡
2 = 0.159476}, 

𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 = {𝜇𝑠20
𝑡 ,𝑏1

𝑡 = 0.992138, σ
𝑠20
𝑡 ,𝑏1

𝑡
2 = 0.172061}, 

𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 = {𝜇𝑠21
𝑡 ,𝑏1

𝑡 = 1.307334, σ
𝑠21
𝑡 ,𝑏1

𝑡
2 = 0.185365}, 

𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 = {𝜇𝑠22
𝑡 ,𝑏1

𝑡 = 0.76432, σ
𝑠22
𝑡 ,𝑏1

𝑡
2 = 0.270551}, 

𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 = {𝜇𝑠23
𝑡 ,𝑏1

𝑡 = 1.989994, σ
𝑠23
𝑡 ,𝑏1

𝑡
2 = 0.142312}, 

𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 = {𝜇𝑠24
𝑡 ,𝑏1

𝑡 = 1.114495, σ
𝑠24
𝑡 ,𝑏1

𝑡
2 = 0.034463}, 

𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 = {𝜇𝑠25
𝑡 ,𝑏1

𝑡 = 0, σ
𝑠25
𝑡 ,𝑏1

𝑡
2 = 1}, 

𝜽𝐹32𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 = {𝜇𝑠20
𝑡 ,𝑏2

𝑡 = 1.82755, σ
𝑠20
𝑡 ,𝑏2

𝑡
2 = 0.471728}, 

𝜽𝐹32𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 = {𝜇𝑠21
𝑡 ,𝑏2

𝑡 = 2.338860, σ
𝑠21
𝑡 ,𝑏2

𝑡
2 = 0.117480}, 

𝜽𝐹32𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 = {𝜇𝑠22
𝑡 ,𝑏2

𝑡 = 2.065790, σ
𝑠22
𝑡 ,𝑏2

𝑡
2 = 0.082350}, 

𝜽𝐹32𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 = {𝜇𝑠23
𝑡 ,𝑏2

𝑡 = 2.6244, σ
𝑠23
𝑡 ,𝑏2

𝑡
2 = 0.346325}, 

𝜽𝐹32𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 = {𝜇𝑠24
𝑡 ,𝑏2

𝑡 = 2.127334, σ
𝑠24
𝑡 ,𝑏2

𝑡
2 = 0.119757}, 

𝜽𝐹32𝑡 |𝑠25
𝑡 ,𝑏2

𝑡 = {𝜇𝑠25
𝑡 ,𝑏2

𝑡 = 0, σ
𝑠25
𝑡 ,𝑏2

𝑡
2 = 1}. 

Distribution p (F67
t |S2

t , Bt ∶ 𝛉F67t |S2t ,Bt) 

The distribution 𝑝 (𝐹67
𝑡 |𝑆2

𝑡, 𝐵𝑡 ∶ 𝜽𝐹67𝑡 |𝑆2𝑡,𝐵𝑡) over the continuous variable 𝐹67  at time slice 𝑡 ≥ 1 is a 

collection of exponential distributions with an exponential distribution 

𝑝 (𝐹67
𝑡  | 𝑠2

𝑡 , 𝑏𝑡 ∶ 𝜆𝐹47𝑡 |𝑠2𝑡 ,𝑏𝑡) = Expon (𝐹67
𝑡 ∶ 𝜆𝐹47𝑡 |𝑠2𝑡 ,𝑏𝑡) 

for each {𝑠2
𝑡 , 𝑏𝑡} ∈ Val(𝑆2) × Val(𝐵), parameterized with MAP parameters  
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𝜽𝐹67𝑡 |𝑆2𝑡−1,𝐵𝑡 = {

𝜆𝐹67𝑡 |𝑠20
𝑡 ,𝑏0

𝑡 , 𝜆𝐹67𝑡 |𝑠21
𝑡 ,𝑏0

𝑡 , 𝜆𝐹67𝑡 |𝑠22
𝑡 ,𝑏0

𝑡 , 𝜆𝐹67𝑡 |𝑠23
𝑡 ,𝑏0

𝑡 , 𝜆𝐹67𝑡 |𝑠24
𝑡 ,𝑏0

𝑡 , 𝜆𝐹67𝑡 |𝑠25
𝑡 ,𝑏0

𝑡 ,

𝜆𝐹67𝑡 |𝑠20
𝑡 ,𝑏1

𝑡 , 𝜆𝐹67𝑡 |𝑠21
𝑡 ,𝑏1

𝑡 , 𝜆𝐹67𝑡 |𝑠22
𝑡 ,𝑏1

𝑡 , 𝜆𝐹67𝑡 |𝑠23
𝑡 ,𝑏1

𝑡 , 𝜆𝐹67𝑡 |𝑠24
𝑡 ,𝑏1

𝑡 , 𝜆𝐹67𝑡 |𝑠25
𝑡 ,𝑏1

𝑡 ,

𝜆𝐹67𝑡 |𝑠20
𝑡 ,𝑏2

𝑡 , 𝜆𝐹67𝑡 |𝑠21
𝑡 ,𝑏2

𝑡 , 𝜆𝐹67𝑡 |𝑠22
𝑡 ,𝑏2

𝑡 , 𝜆𝐹67𝑡 |𝑠23
𝑡 ,𝑏2

𝑡 , 𝜆𝐹67𝑡 |𝑠24
𝑡 ,𝑏2

𝑡 , 𝜆𝐹67𝑡 |𝑠25
𝑡 ,𝑏2

𝑡

}

= {
0.080120, 0.073906, 0.101438, 0.072194, 0.168699, 0.530724,
0.070365, 0.098471, 0.136746, 0.159795, 0.008179, 0.080120,
0.128279, 0.093204, 0.096084, 0.22106, 0.351450, 0.080120

}. 

Appendix 3 DySAM Software 

As an additional result of the project, this report is accompanied by the DySAM software appendix, 

comprised of executable applications (for Windows operating systems), exemplary data, and 

specification files that allow to utilize, test, and adapt the six models developed in DySAM. A separate 

document explaining the content and utilization of the DySAM software is provided as part of the 

DySAM software appendix. 
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