

#wirsindbereit

VDA Recommendation

Interface for the communication between
automated guided vehicles (AGV) and a
master control

VDA 5050

Version 2.1.0, May 2024

VDA 5050 Version 2.1.0, May 2024 2

Copyright 2024

Definition of a communication interface for driverless transport systems (DTS). This
recommendation describes the communication interface for exchanging order and status data
between a central master control and automated guided vehicles (AGVs) for intralogistics
processes.

Disclaimer

The following explanations serve as an indication for the execution of an interface for
communication between automated guided vehicles (AGVs) and master control and one that
is freely applicable to everyone and is non-binding. Those who apply them shall ensure that
they are applied properly in the specific case.

They shall take into account the state of the art prevailing at the time of each issue. By
applying the proposals, no one is evasive of responsibility for their own actions. The
statements do not claim to be exhaustive or to the exact interpretation of the existing
legislation. They may not replace the study of relevant policies, laws and regulations.
Furthermore, the special features of the respective products as well as their different possible
applications shall be taken into account. Everyone acts at their own risk in this regard.
Liability of the VDA and those involved in the development or application of the proposals is
excluded.

If you encounter any inaccuracies in the application of the proposals or the possibility of an
incorrect interpretation, please inform the VDA immediately so that any defects can be
rectified.

Publisher Verband der Automobilindustrie e.V. (VDA) Behrenstraße 35, 10117 Berlin,
Germany www.vda.de

Copyright Association of the Automotive Industry (VDA) Reproduction and any other form of
reproduction is only permitted with specification of the source.

Disclaimer

The VDA Recommendations are recommendations that may be freely adopted by anyone.

Users are responsible for correct implementation of the recommendations as required on a

case-by-case basis.

The recommendations take into account the prevailing technology at the time of publication.

Use of the VDA Recommendations does not absolve anyone from responsibility for his/her

own actions, and all users act at their own risk. Liability of VDA and those involved in drafting

of VDA Recommendations is excluded.

VDA 5050 Version 2.1.0, May 2024 3

Copyright 2024

Table of contents

1 Foreword 5

2 Objective of the document 5

3 Scope 6

3.1 Other applicable documents 7

4 Requirements and protocol definition 7

5 Process and content of communication 8

6 Protocol specification 10

6.1 Symbols of the tables and meaning of formatting 10

6.2 MQTT connection handling, security and QoS 11

6.3 MQTT topic levels 11

6.4 Protocol header 12

6.5 Topics for communication 13

6.6 Topic: "order" (from master control to AGV) 14

6.7 Maps 29

6.8 Actions 33

6.9 Topic: "instantActions" (from master to control to AGV) 41

6.10 Topic: "state" (from AGV to master control) 41

6.11 Action states 53

6.12 Action blocking types and sequence 54

6.13 Topic "visualization" 56

6.14 Topic "connection" 56

6.15 Topic "factsheet" 57

7 Best practice 66

7.1 Error reference 66

7.2 Format of parameters 66

8 Glossary 67

8.1 Definition 67

VDA 5050 Version 2.1.0, May 2024 4

Copyright 2024

List of Figures

Figure 1 Integration of DTS inventory systems .. 6
Figure 2 Structure of the Information Flow .. 8
Figure 3 Graph representation in master control and graph transmitted in orders 14
Figure 4 Procedure for changing the driving route "Horizon" .. 15
Figure 5 Pseudocode of an order... 16
Figure 6 Pseudocode of an order update. Note the change of the orderUpdateId 16
Figure 7 Regular update process - order extension. ... 17
Figure 8 The process of accepting an order or order update. ... 18
Figure 9 Expected behavior after a cancelOrder. .. 20
Figure 10 Edges with a corridor attribute that defines the left and right boundaries within

which a vehicle is allowed to deviate from its predefined trajectory to avoid
obstacles. On the left, the kinematic center defines the allowed deviation, while on
the right, the contour of the vehicle, possibly extended by the load, defines the
allowed deviation. This is defined by the corridorRefPoint parameter. 22

Figure 11 Coordinate system with sample AGV and orientation ... 29
Figure 12 Coordinate systems for map and vehicle .. 30
Figure 13 Communication required between master control, AGV and map server to

download, enable, and delete a map. .. 31
Figure 14 Order information provided by the state topic. Only the ID of the last node and the

remaining nodes and edges are transmitted ... 42
Figure 15 Depiction of nodeStates, edgeStates, actionStates during order handling 43
Figure 16 All possible status transitions for actionStates .. 54
Figure 17 Handling multiple actions ... 55

List of tables

Table 1 The operating modes and their meaning 53
Table 2 The acceptable values for the actionStatus field 53
Table 3 Action blocking types 54

VDA 5050 Version 2.1.0, May 2024 5

Copyright 2024

1 Foreword

The interface was established in cooperation between the Verband der Automobilindustrie
e.V. (VDA) and Verband Deutscher Maschinen- und Anlagenbau e. V. (VDMA). The aim of
both parties is to create a universally applicable interface. Proposals for changes to the
interface shall be submitted to the VDA, are evaluated jointly with the VDMA and adopted into
a new version status in the event of a positive decision. The contribution to this document via
GitHub is greatly appreciated. The repository can be found at the following link:
https://github.com/vda5050/vda5050.

2 Objective of the document

The objective of the recommendation is to simplify the connection of new vehicles to an
existing master control system and to enable parallel operation with AGVs from different
manufacturers and conventional systems (inventory systems) in the same working
environment.

A uniform interface between a master control and AGVs shall be defined. This should be
achieved by the following points:

• Description of a standard for communication between AGV and master control and
thus a basis for the integration of transport systems into a continuous process
automation using co-operating transport vehicles.

• Increase in flexibility through, among other things, increased vehicle autonomy,
process modules and interface, and preferably the separation of a rigid sequence of
event-controlled command chains.

• Reduction of implementation time due to high "Plug & Play" capability, as required
information (e.g., order information) are provided by central services and are
generally valid. Vehicles should be able to be put into operation independently of the
manufacturer with the same implementation effort taking into account the
requirements of occupational safety.

• Complexity reduction and increase of the "Plug & Play" capability of the systems
through the use of uniform, overarching coordination with the corresponding logic for
all transport vehicles, vehicle models and manufacturers.

• Increase in manufacturers' independence using common interfaces between vehicle
control and coordination level.

• Integration of proprietary DTS inventory systems by implementing vertical
communication between the proprietary master control and the superordinate master
control (cf. Figure 1).

https://github.com/vda5050/vda5050

VDA 5050 Version 2.1.0, May 2024 6

Copyright 2024

Figure 1 Integration of DTS inventory systems

In order to implement the above-mentioned objectives, this document describes an interface
for the communication of order and status information between AGV and master control.

Other interfaces required for operation between AGV and master control (e.g., taking special
skills freely into account with regard to path planning, etc.) or for communicating with other
system components (e.g., external peripherals, fire protection gates, etc.) are not initially
included in this document.

3 Scope

This recommendation contains definitions and best practice regarding communication
between automated guided vehicles (AGVs) and master control. The goal is to allow AGVs
with different characteristics (e.g., underrun tractor or fork lift AGV) to communicate with
master control in a uniform language. This creates the basis for operating any combination of
AGV in a master control. The master control provides orders and coordinates the AGVs
traffic.

The interface is based on the requirements from production and plant logistics in the
automotive industry. According to the formulated requirements, the requirements of
intralogistics cover the requirements of the logistics department, i.e., the logistical processes
from goods receiving to production supply to goods out, through control of freely navigating
vehicles and guided vehicles.

In contrast to automated vehicles, autonomous vehicles solve problems that occur on the
basis of the corresponding sensor system and algorithms independently and can react
accordingly to changes in a dynamic environment or be adapted to them shortly afterwards.
Autonomous properties such as the independent bypassing of obstacles can be fulfilled by
freely navigating vehicles as well as guided vehicles. However, as soon as the path planning
is carried out on the vehicle itself, this document describes freely navigating vehicles (see
glossary). Autonomous systems are not completely decentralized (swarm intelligence) and
have defined behavior through predefined rules.

https://github.com/VDA5050/VDA5050/blob/development/assets/Figure1.png

VDA 5050 Version 2.1.0, May 2024 7

Copyright 2024

For the purpose of a sustainable solution, an interface is described below which can be
expanded in its structure. This should enable a complete coverage of the master control for
vehicles that are guided. Vehicles that are freely navigating can be integrated into the
structure; a detailed specification required for this is not part of this recommendation.

For the integration of proprietary stock systems, individual definitions of the interface may be
required, which are not considered as part of this recommendation.

3.1 Other applicable documents

Document Version Description

VDI Guideline 2510 October 2005 Driverless transport systems
(DTS)

VDI Guideline 4451 Sheet 7 October 2005 Compatibility of driverless
transport systems (DTS) - DTS
master control

DIN EN ISO 3691-4 December 2023 Industrial Trucks Safety
Requirements and Verification-
Part 4: Driverless trucks and their
systems

LIF – Layout Interchange Format March 2024 Definition of a format of track
layouts for exchange between the
integrator of the driverless
transport vehicles and a (third-
party) master control system.

4 Requirements and protocol definition

The communication interface is designed to support the following requirements:

• Control of min. 1000 vehicles

• Enabling the integration of vehicles with different degrees of autonomy

• Enable decision, e.g., with regard to the selection of routes or the behavior at
intersections

Vehicles should transfer their status at a regular interval or when their status changes.

Communication is done over wireless networks, taking into account the effects of connection
failures and loss of messages.

The message protocol is Message Queuing Telemetry Transport (MQTT), which is to be used
in conjunction with a JSON structure. MQTT 3.1.1 was tested during the development of this
protocol and is the minimum required version for compatibility. MQTT allows the distribution
of messages to subchannels, which are called "topics". Participants in the MQTT network
subscribe to these topics and receive information that concerns or interests them.

The JSON structure allows for a future extension of the protocol with additional parameters.
The parameters are described in English to ensure that the protocol is readable,
comprehensible and applicable outside the German-speaking area.

VDA 5050 Version 2.1.0, May 2024 8

Copyright 2024

5 Process and content of communication

There are at least the following participants for the operation of AGVs:

• The operator of the AGV system provides basic information

• The master control organizes and manages the operation

• The AGV carries out the orders

Figure 2 describes the communication content during the operational phase. During
implementation or modification, the AGV and master control are manually configured.

Figure 2 Structure of the Information Flow

VDA 5050 Version 2.1.0, May 2024 9

Copyright 2024

During the implementation phase, the driverless transport systems (DTS) consisting of
master control and AGVs is set up. The necessary framework conditions are defined by the
operator and the required information is either entered manually by them or stored in the
master control by importing from other systems. Essentially, this concerns the following
content:

• Definition of routes: Using CAD import, routes can be imported to the master control.
Alternatively, routes can also be implemented manually in the master control by the
operator. Routes can be one-way streets, restricted for certain vehicle groups (based
on the size ratios), etc.

• Route network configuration: Within the routes, stations for loading and unloading,
battery charging stations, peripheral environments (gates, elevators, barriers),
waiting positions, buffer stations, etc. are defined.

• Vehicle configuration: The physical properties of an AGV (size, available load carrier
mounts, etc.) are stored by the operator. The AGV shall communicate this information
via the topic factsheet in a specific way that is defined in Section 6.15 Topic

"factsheet" of this document.

The configuration of routes and the route network described above are not part of this
document. They form the basis for enabling order control and driving course assignment by
the master control based on this information and the transport requirements to be completed.
The resulting orders for an AGV are then transferred to the vehicle via an MQTT message
broker. This then continuously reports its status to the master control in parallel with the
execution of the job. This is also done using the MQTT message broker.

Functions of the master control are:

• Assignment of orders to the AGVs

• Route calculation and guidance of the AGVs (taking into account the limitations of the
individual physical properties of each AGV, e.g., size, maneuverability, etc.)

• Detection and resolution of blockages ("deadlocks")

• Energy management: Charging orders can interrupt transfer orders

• Traffic control: Buffer routes and waiting positions

• (Temporary) changes in the environment, such as freeing certain areas or changing
the maximum speed

• Communication with peripheral systems such as doors, gates, elevators, etc.

• Detection and resolution of communication errors

Functions of the AGVs are:

• Localization

• Navigation along associated routes (guided or autonomous)

• Execution of actions

• Continuous transmission of vehicle status

In addition, the integrator shall take into account the following when configuring the overall
system (incomplete list):

• Map configuration: The coordinate systems of the master control and the AGV shall
be matched.

• Pivot point: The use of different points of the AGV or points of charge as a pivot point
leads to different envelopes of the vehicle. The reference point may vary depending
on the situation, e.g., it may be different for an AGV carrying a load and for an AGV
that does not carry a load.

VDA 5050 Version 2.1.0, May 2024 10

Copyright 2024

6 Protocol specification

The following section describes the details of the communication protocol. The protocol
specifies the communication between the master control and the AGV. Communication
between the AGV and peripheral equipment, e.g., between the AGV and a gate, is excluded.

The different messages are presented in tables describing the contents of the fields of the
JSON that is sent as an order, state, etc.

In addition, JSON schemas are available for validation in the public git repository
(https://github.com/VDA5050/VDA5050). The JSON schemas are updated with every release
of the VDA5050. If there are differences between the JSON schemas and this document, the
variant in this document applies.

6.1 Symbols of the tables and meaning of

formatting

The table contains the name of the identifier, its unit, its data type, and a description, if any.

Identification Description

standard Variable is an elementary data type

bold Variable is a non-elementary data type (e.g., JSON object or
array) and defined separately

italic Variable is optional

Italic and bold Variable is optional and a non-elementary data type

arrayName[arrayDataType] Variable (here arrayName) is an array of the data type
included in the square brackets (here the data type is
arrayDataType)

All keywords are case sensitive. All field names are in camelCase. All enumerations are in
UPPERCASE without underscores.

6.1.1 Optional fields

If a variable is marked as optional, it means that it is optional for the sender because the
variable might not be applicable in certain cases (e.g., when the master control sends an
order to an AGV, some AGVs plan their trajectory themselves and the field trajectory within

the edge object of the order can be omitted).

If the AGV receives a message that contains a field which is marked as optional in this
protocol, the AGV is expected to act accordingly and cannot ignore the field. If the AGV
cannot process the message accordingly then the expected behavior is to communicate this
within an error message and to reject the order.

Master control shall only send optional information that the AGV supports.

Example: Trajectories are optional. If an AGV cannot process trajectories, master control
shall not send a trajectory to the vehicle.

The AGV shall communicate which optional parameters it needs via an AGV factsheet

message.

https://github.com/VDA5050/VDA5050

VDA 5050 Version 2.1.0, May 2024 11

Copyright 2024

6.1.2 Permitted characters and field lengths

All communication is encoded in UTF-8 to enable international adaption of descriptions. The
recommendation is that IDs should only use the following characters:

A-Z a-z 0-9 _ - . :

A maximum message length is not defined, but limited by the MQTT protocol specification
and perhaps by technical constraints defined inside the factsheet. If an AGVs memory is
insufficient to process an incoming order, it is to reject the order. The matching of maximum
field lengths, string lengths or value ranges is up to the integrator. For ease of integration,
AGV vendors shall supply an AGV factsheet that is detailed in 6.15.1 Factsheet JSON
structure.

6.1.3 Notation of fields, topics and enumerations

Topics and fields in this document are highlighted in the following style: exampleField and

exampleTopic. Enumerations shall be written in uppercase. These values are enclosed in

the document with single quotes. This includes keywords as in actionStatus ('WAITING',

'FINISHED', etc.).

6.1.4 JSON data types

Where possible, JSON data types shall be used. A Boolean value is thus encoded by "true"
or "false", not with an enumeration ('TRUE', 'FALSE') or magic numbers. Numerical data
types are specified with type and precision, e.g., float64 or uint32. Special number values
from the IEEE 754 like NaN and infinity are not supported.

6.2 MQTT connection handling, security and QoS

The MQTT protocol provides the option of setting a last will message for a client. If the client
disconnects unexpectedly for any reason, the last will is distributed by the broker to other
subscribed clients. The use of this feature is described in Section 6.14 Topic "connection".

If the AGV disconnects from the broker, it keeps all the order information and fulfills the order
up to the last released node.

Protocol security needs to be taken into account by broker configuration.

To reduce the communication overhead, the MQTT QoS level 0 (Best Effort) is to be used for
the topics order, instantActions, state, factsheet and visualization. The topic

connection shall use the QoS level 1 (At Least Once).

6.3 MQTT topic levels

The MQTT topic structure is not strictly defined due to the mandatory topic structure of cloud
providers. For a cloud-based MQTT broker the topic structure has to be adapted individually
to match the topics defined in this protocol. This means that the topic names defined in the
following sections are mandatory.

For a local broker the MQTT topic levels are suggested as followed:

interfaceName/majorVersion/manufacturer/serialNumber/topic

VDA 5050 Version 2.1.0, May 2024 12

Copyright 2024

Example:

uagv/v2/KIT/0001/order

MQTT Topic Level Data type Description

interfaceName string Name of the used interface

majorVersion string Major version number of the VDA 5050
recommendation, preceded by "v"

manufacturer string Manufacturer of the AGV.

serialNumber string Unique AGV serial number consisting of the following
characters:
A-Z
a-z
0-9
_
.
:
-

topic string Topic (e.g., order or state) see Section 6.5 Topics for
communication.

Note: Since the / character is used to define topic hierarchies, it shall not be used in any of
the aforementioned fields. The $ character is also used in some MQTT brokers for special
internal topics, so it should not be used either.

6.4 Protocol header

Each JSON message starts with a header. In the following sections, the following fields will
be referenced as header for readability. The header consists of the following individual
elements. The header is not a JSON object.

Object structure/
Identifier

Data type Description

headerId uint32 Header ID of the message. The headerId is defined per
topic and incremented by 1 with each sent (but not
necessarily received) message.

timestamp string Timestamp (ISO 8601, UTC); YYYY-MM-
DDTHH:mm:ss.ffZ (e.g., "2017-04-15T11:40:03.12Z").

version string Version of the protocol [Major].[Minor].[Patch] (e.g.,
1.3.2).

manufacturer string Manufacturer of the AGV.

serialNumber string Serial number of the AGV.

VDA 5050 Version 2.1.0, May 2024 13

Copyright 2024

Protocol version

The protocol version uses semantic versioning as versioning schema.

Examples for major version changes:

• Breaking changes, e.g., new non-optional fields

Examples for minor version changes:

• New features like an additional topic for visualization

Examples for patch version:

• Higher available precision for a batteryCharge

6.5 Topics for communication

The AGV protocol uses the following topics for information exchange between master control
and AGV.

Topic name Published
by

Subscribed
by

Used for Implementation Schema

order master
control

AGV Communication of
driving orders from
master control to the
AGV

mandatory order.schema

instantActions master
control

AGV Communication of
the actions that are
to be executed
immediately

mandatory instantActions.schema

state AGV master
control

Communication of
the AGV state

mandatory state.schema

visualization AGV visualization
systems

Higher frequency of
position topic for
visualization
purposes only

optional visualization.schema

connection Broker/
AGV

master
control

Indicates when AGV
connection is lost,
not to be used by
master control for
checking the vehicle
health, added for an
MQTT protocol level
check of connection

mandatory connection.schema

factsheet AGV master
control

Parameters or
vendor-specific
information to assist
set-up of the AGV in
master control

mandatory factsheet.schema

VDA 5050 Version 2.1.0, May 2024 14

Copyright 2024

6.6 Topic: "order" (from master control to AGV)

The topic "order" is the MQTT topic via which the AGV receives a JSON encapsulated order.

6.6.1 Concept and logic

The basic structure of an order is a graph of nodes and edges. The AGV is expected to
traverse the nodes and edges to fulfill the order. The full graph of all connected nodes and
edges is held by master control.

The graph representation in the master control contains restrictions, e.g., which AGV is
allowed to traverse which edge. These restrictions will not be communicated to the AGV. The
master control only includes edges in an AGV order which the concerning AGV is allowed to
traverse.

Figure 3 Graph representation in master control and graph transmitted in orders

The nodes and edges are passed as two lists in the order message. The order of the nodes
and edges within those lists also governs in which sequence the nodes and edges shall be
traversed.

For a valid order, there shall be at least one node and the number of edges shall be equal to
the number of nodes minus one.

The first node of an order shall be trivially reachable for the AGV. This means either that the
AGV is already standing on the node, or that the AGV is in the node's deviation range.

Nodes and edges both have a boolean attribute released. If a node or edge is released, the

AGV is expected to traverse it. If a node or edge is not released, the AGV shall not traverse it.

An edge can be released only if both the start and the end node of the edge are released.

After an unreleased edge, no released nodes or edges can follow in the sequence.

The set of released nodes and edges are called the "base". The set of unreleased nodes and
edges are called the "horizon".

It is valid to send an order without a horizon.

An order message does not necessarily describe the full transport order. For traffic control
and to accommodate resource constrained vehicles, the full transport order (which might
consist of many nodes and edges) can be split up into many sub-orders, which are connected
via their orderId and orderUpdateId. The process of updating an order is described in the

next section.

VDA 5050 Version 2.1.0, May 2024 15

Copyright 2024

6.6.2 Orders and order update

To support traffic management, master control can split the path communicated via order into
two parts:

• "Base": This is the defined route that the AGV is allowed to travel. All nodes and
edges of the base route have already been released by the master control for the
vehicle. The last node of the base is called decision point.

• "Horizon": This is the route currently planned by master control for the AGV to travel
after the decision point. The horizon route has not yet been released by the master
control.

The AGV shall stop at the decision point if no further nodes and edges are added to the base.
In order to ensure a fluent movement, the master control should extend the base before the
AGV reaches the decision point, if the traffic situation allows for it.

Since MQTT is an asynchronous protocol and transmission via wireless networks is not
reliable, the base cannot be changed. The master control shall therefore assume that the
base has already been executed by the AGV. A later section describes a procedure to cancel
an order, but this is also considered unreliable due to the communication limitations
mentioned above.

The master control has the possibility to change the horizon by sending an updated route to
the AGV which includes the changed list of nodes and edges. The procedure for changing the
horizon route is shown in Figure 4.

Figure 4 Procedure for changing the driving route "Horizon"

In Figure 4, an initial job is first sent by the control panel at time t = 1. Figure 5 shows the
pseudocode of a possible job. For the sake of readability, a complete JSON example has
been omitted here.

VDA 5050 Version 2.1.0, May 2024 16

Copyright 2024

Figure 5 Pseudocode of an order.

At time t = 3, the order is updated by sending an extension of the order (see example in
Figure 6). Note that the orderUpdateId is incremented and that the first node of the order

update corresponds to the last shared base node of the previous order message.

This ensures that the AGV can also perform the job update, i.e., that the first node of the
order update is reachable by executing the edges already known to the AGV.

Figure 6 Pseudocode of an order update. Note the change of the orderUpdateId

This also aids in the event that an order update is lost (e.g., due to an unreliable wireless
network). The AGV can always check that the last known base node has the same nodeId

(and nodeSequenceId, more on that later) as the first new base node.

Also note that node g is the only base node that is sent again. Since the base cannot be
changed, a retransmission of nodes f and d is not valid.

{
 orderId: "1234"
 orderUpdateId:0,
 nodes: [
 f {released: True},
 d {released: True},
 g {released: True},
 b {released: False},
 h {released: False}
],
 edges: [
 e1 {released: True},
 e3 {released: True},
 e8 {released: False},
 e9 {released: False}
]
}

{
 orderId: 1234,
 orderUpdateId: 1,
 nodes: [
 g {released: True},
 b {released: True},
 h {released: True},
 i {released: False}
],
 edges: [
 e8 {released: True},
 e9 {released: True},
 e10 {released: False}
]
}

VDA 5050 Version 2.1.0, May 2024 17

Copyright 2024

It is important, that the contents of the stitching node (node g in the example case) are not
changed. For actions, deviation range, etc., the AGV shall use the instructions provided in the
first order (Figure 5, orderUpdateId 0).

Figure 7 Regular update process - order extension.

Figure 7 describes how an order should be extended. It shows the information that is
currently available on the AGV. The orderId stays the same and the orderUpdateId is

incremented.

The last node of the previous base is the first base node in the updated order. With this node
the AGV can add the updated order onto the current order (stitching). The other nodes and
edges from the previous base are not resent.

Master control has the option to make changes to the horizon by sending entirely different
nodes as the new base. The horizon can also be deleted.

To allow loops in orders (like going from node a to b and then back to a) a sequenceId is

assigned to the node and edge objects. This sequenceId runs over the nodes and edges

(first node of an order receives a 0, the first edge then gets the 1, the second node then gets
the 2, and so on). This allows for easier tracking of the order progress.

Once a sequenceId is assigned, it does not change with order updates (see Figure 7). This

is necessary to determine on AGV side to which node the master control refers to.

Figure 8 describes the process of accepting an order or order update.

VDA 5050 Version 2.1.0, May 2024 18

Copyright 2024

Figure 8 The process of accepting an order or order update.

VDA 5050 Version 2.1.0, May 2024 19

Copyright 2024

1. is received order valid?: All formatting and JSON data types are correct?

2. is received order new or an update of the current order?: Is orderId of the received

order different to orderId of order the vehicle currently holds?

3. is vehicle still executing an order or waiting for an update?: Are nodeStates not

empty or are actionStates containing states which are neither 'FAILED' nor

'FINISHED'? Nodes and edges and the corresponding action states of the order horizon
are also included inside the state. Vehicle might still have a horizon and therefore
waiting for an update and executing an order.

4. is start of new order close enough to current position?: Is the vehicle already
standing on the node, or is it in the node's deviation range (see Section 6.6.1 Concept
and logic)?

5. is received order update deprecated?: Is orderUpdateId smaller than the one

currently on the vehicle?

6. is received order update currently on vehicle?: Is orderUpdateId equal to the one

currently on the vehicle?

7. is the received update a valid continuation of the currently still running order?:
Is the first node of the received order equal to the current decision point (last node of
the current base)? The vehicle is still moving or executing actions related to the base
released in previous order updates or still has a horizon and is therefore waiting for a
continuation of the order. In this case, the order update is only accepted if the first node
of the new base is equal to the last node of the previous base.

8. is the received update a valid continuation of the previously completed order?:
Are nodeId and sequenceId of the first node of the received order update equal to

lastNodeId and lastNodeSequenceId? The vehicle is not executing any actions

anymore neither is it waiting for a continuation of the order (meaning that it has
completed its base with all related actions and does not have a horizon). The order
update is now accepted if it continues from the last traversed node, therefore the first
node of the new base needs to match the vehicle's lastNodeId as well as

lastNodeSequenceId.

9. populate/append states refers to the actionStates / nodeStates / edgeStates.

6.6.3 Order Cancellation (by Master Control)

In the event of an unplanned change in the base nodes, the order shall be canceled by using
the instantAction cancelOrder.

After receiving the instantAction cancelOrder, the vehicle stops (based on its capabilities,

e.g., right where it is or on the next node).

If there are actions scheduled, these actions shall be cancelled and report 'FAILED' in their
actionState. If there are running actions, those actions should be cancelled and also be

reported as 'FAILED'. If the action cannot be interrupted, the actionState of that action

should reflect that by reporting 'RUNNING' while it is running, and after that the respective
state ('FINISHED', if successful and 'FAILED', if not). While actions are running, the
cancelOrder action shall report 'RUNNING', until all actions are cancelled/finished. After all

movement of the vehicle and all of its actions are stopped, the cancelOrder action status

shall report 'FINISHED'.

The orderId and orderUpdateId are kept.

Figure 9 shows the expected behavior for different AGV capabilities.

VDA 5050 Version 2.1.0, May 2024 20

Copyright 2024

Figure 9 Expected behavior after a cancelOrder.

VDA 5050 Version 2.1.0, May 2024 21

Copyright 2024

6.6.3.1 Receiving a new order after cancellation

After the cancellation of an order, the vehicle shall be in a state to receive a new order.

In the case of an AGV that localizes itself on nodes via a tag, the new order has to begin on
the node the AGV is now standing on (see also Figure 5).

In case of an AGV that can stop in between nodes, the choice is up to master control how the
next order should be started. The AGV shall accept both methods.

There are two options:

• Send an order, where the first node is a temporary node that is positioned where the
AGV currently stands. The AGV shall then realize that this node is trivially reachable
and accept the order.

• Send an order, where the first node is the last traversed node of the previous order
but set the deviation range so large that the AGV is within this range. Thus, the AGV
shall realize that this node shall be counted as traversed and accept the order.

6.6.3.2 Receiving a cancelOrder action when AGV has no order

If the AGV receives a cancelOrder action but, the AGV currently has no order, or the

previous order was canceled, the cancelOrder action shall be reported as 'FAILED'.

The AGV shall report a “noOrderToCancel” error with the errorLevel set to 'WARNING'.

The actionId of the instantAction shall be passed as an errorReference.

6.6.4 Order rejection

There are several scenarios, when an order shall be rejected. These scenarios are shown in
Figure 8 and described below.

6.6.4.1 Vehicle gets a malformed new order

Resolution:

1. Vehicle does NOT take over the new order in its internal buffer.
2. The vehicle reports the warning "validationError"
3. The warning shall be reported until the vehicle has accepted a new order.

6.6.4.2 Vehicle receives an order with actions it cannot perform

or with fields that it cannot use

Examples:

• Non-executable actions: lifting height higher than maximum lifting height, lifting
actions although no stroke is installed, etc.

• Non-useable fields: trajectory, etc.

Resolution:

1. Vehicle does NOT take over the new order in its internal buffer
2. Vehicle reports the warning "orderError" with the wrong fields as error references
3. The warning shall be reported until the vehicle has accepted a new order.

VDA 5050 Version 2.1.0, May 2024 22

Copyright 2024

6.6.4.3 Vehicle gets a new order with the same orderId, but a

lower orderUpdateId than the current orderUpdateId

Resolution:

1. Vehicle does NOT take over the new order in its internal buffer.
2. Vehicle keeps the previous order in its buffer.
3. The vehicle reports the warning "orderUpdateError"
4. The vehicle continues with executing the previous order.

If the AGV receives an order with the same orderId and orderUpdateId twice, the second

order will be ignored. This might happen, if the master control resends the order because the
state message was received too late by master control and it could therefore not verify that
the first order had been received.

6.6.5 Corridors

The optional corridor edge attribute allows the vehicle to deviate from the edge trajectory

for obstacle avoidance and defines the boundaries within which the vehicle is allowed to
operate.

To use the corridor attribute, a predefined trajectory is required that the vehicle would follow

if no corridor attribute was defined. This can be either the trajectory defined on the vehicle

known to the master control or the trajectory sent in an order. The behavior of a vehicle using
the corridor attribute is still the behavior of a line-guided vehicle, except that it's allowed to

temporarily deviate from a trajectory to avoid obstacles.

Remark: An edge inside an order defines a logical connection between two nodes and not
necessarily the (real) trajectory that a vehicle follows when driving from the start node to the
end node. Depending on the vehicle type, the trajectory that a vehicle takes between the start
and end nodes is either defined by master control via the trajectory edge attribute or assigned
to the vehicle as a predefined trajectory. Depending on the internal state of the vehicle, the
selected trajectory may vary.

Figure 10 Edges with a corridor attribute that defines the left and right boundaries within which a

vehicle is allowed to deviate from its predefined trajectory to avoid obstacles. On the left, the
kinematic center defines the allowed deviation, while on the right, the contour of the vehicle,
possibly extended by the load, defines the allowed deviation. This is defined by the
corridorRefPoint parameter.

VDA 5050 Version 2.1.0, May 2024 23

Copyright 2024

The area in which the vehicle is allowed to navigate independently (and deviate from the
original edge trajectory) is defined by a left and a right boundary. The optional
corridorRefPoint field specifies whether the vehicle control point or the vehicle contour

should be inside the defined boundary. The boundaries of the edges shall be defined in such
a way that the vehicle is inside the boundaries of the new and now current edge as soon as it
passes a node. Instead of setting the corridor boundaries to zero, master control shall not use
the corridor attribute if the vehicle shall not deviate from the trajectory.

The vehicle's motion control software shall constantly check that the vehicle is within the
defined boundaries. If not, the vehicle shall stop because it is out of the allowed navigation
space and report an error. The master control can decide if user interaction is required or if
the vehicle can continue by canceling the current order and sending a new order to the
vehicle with corridor information that allows the vehicle to move again.

Remark: Allowing the vehicle to deviate from the trajectory increases the possible footprint of
the vehicle during driving. This circumstance shall be considered during initial operation, and
if master control makes a traffic control decision based on the vehicle's footprint.

See also Section 6.10.2 Traversal of nodes and entering/leaving edges, triggering of actions
for further information.

6.6.6 Implementation of the order message

Object structure Unit Data type Description

headerId uint32 Header ID of the message.
The header ID is defined per topic and
incremented by 1 with each sent (but not
necessarily received) message.

timestamp string Timestamp (ISO 8601, UTC); YYYY-MM-
DDTHH:mm:ss.ffZ (e.g., "2017-04-
15T11:40:03.12Z")

version string Version of the protocol
[Major].[Minor].[Patch] (e.g., 1.3.2)

manufacturer string Manufacturer of the AGV

serialNumber string Serial number of the AGV

orderId string Order identification.
This is to be used to identify multiple order
messages that belong to the same order.

orderUpdateId uint32 Order update identification.
Is unique per orderId.
If an order update is rejected, this field is to
be passed in the rejection message.

zoneSetId string Unique identifier of the zone set, that the
AGV has to use for navigation or that was
used by master control for planning.

Optional: Some master control systems do
not use zones.
Some AGVs do not understand zones.
Do not add to message, if no zones are
used.

nodes [node] array Array of node objects to be traversed for
fulfilling the order.
One node is enough for a valid order.
Leave edge array empty in that case.

VDA 5050 Version 2.1.0, May 2024 24

Copyright 2024

Object structure Unit Data type Description

edges [edge] array Array of edge objects to be traversed for
fulfilling the order.
One node is enough for a valid order.
Leave edge array empty in that case.

Object structure Unit Data type Description

node { JSON object

nodeId string Unique node identification

sequenceId uint32 Number to track the sequence of nodes and
edges in an order and to simplify order
updates.
The main purpose is to distinguish between
a node, which is passed more than once
within one orderId.
The variable sequenceId runs across all
nodes and edges of the same order and is
reset when a new orderId is issued.

nodeDescription string Additional information on the node

released boolean “true” indicates that the node is part of the
base.
"false" indicates that the node is part of the
horizon.

nodePosition JSON object Node position.
Optional for vehicle types that do not
require the node position (e.g., line-guided
vehicles).

actions [action]

}

 array Array of actions to be executed on a node.
Empty array, if no actions required.

Object structure Unit Data type Description

nodePosition { JSON object Defines the position on a map in a global
project-specific world coordinate system.
Each floor has its own map.
All maps shall use the same project-specific
global origin.

x m float64 X-position on the map in reference to the
map coordinate system.
Precision is up to the specific
implementation.

y m float64 Y-position on the map in reference to the
map coordinate system.
Precision is up to the specific
implementation.

theta rad float64 Range: [-Pi ... Pi]

Absolute orientation of the AGV on the
node.
Optional: vehicle can plan the path by itself.
If defined, the AGV has to assume the theta
angle on this node.

VDA 5050 Version 2.1.0, May 2024 25

Copyright 2024

Object structure Unit Data type Description

If previous edge disallows rotation, the AGV
shall rotate on the node.
If following edge has a differing orientation
defined but disallows rotation, the AGV is to
rotate on the node to the edges desired
rotation before entering the edge.

allowedDeviationXY m float64 Indicates how precisely an AGV shall match
the position of a node for it to be considered
traversed.

If = 0.0: no deviation is allowed (no
deviation means within the normal
tolerance of the AGV manufacturer).

If > 0.0: allowed deviation radius in meters.
If the AGV passes a node within the
deviation radius, the node can be
considered traversed.

allowedDeviationTheta rad float64 Range: [0.0 … Pi]

Indicates how precise the orientation
defined in theta has to be met on the node
by the AGV.
The lowest acceptable angle is theta -
allowedDeviationTheta and the highest
acceptable angle is theta +
allowedDeviationTheta.

mapId string Unique identification of the map on which
the position is referenced.
Each map has the same project-specific
global origin of coordinates.
When an AGV uses an elevator, e.g.,
leading from a departure floor to a target
floor, it will disappear off the map of the
departure floor and spawn in the related lift
node on the map of the target floor.

mapDescription

}

 string Additional information on the map.

Object structure Unit Data type Description

action { JSON object Describes an action that the AGV can
perform.

actionType string Name of action as described in the first
column of "Actions and Parameters".
Identifies the function of the action.

actionId string Unique ID to identify the action and map
them to the actionState in the state.
Suggestion: Use UUIDs.

actionDescription string Additional information on the action

blockingType string Enum {'NONE', 'SOFT', 'HARD'}:
‘NONE’: allows driving and other actions;
'SOFT': allows other actions but not driving;

VDA 5050 Version 2.1.0, May 2024 26

Copyright 2024

Object structure Unit Data type Description

'HARD': is the only allowed action at that
time.

actionParameters
[actionParameter]

}

 array Array of actionParameter objects for the
indicated action, e.g., "deviceId", "loadId",
"external triggers".

An example implementation can be found in
7.2 Format of parameters.

Object structure Unit Data type Description

edge { JSON object Directional connection between two nodes.

edgeId string Unique edge identification.

sequenceId uint32 Number to track the sequence of nodes and
edges in an order and to simplify order
updates.
The variable sequenceId runs across all
nodes and edges of the same order and is
reset when a new orderId is issued.

edgeDescription string Additional information on the edge.

released boolean "true" indicates that the edge is part of the
base.
"false" indicates that the edge is part of the
horizon.

startNodeId string nodeId of first node within the order.

endNodeId string nodeId of the last node within the order.

maxSpeed m/s float64 Permitted maximum speed on the edge.
Speed is defined by the fastest
measurement of the vehicle.

maxHeight m float64 Permitted maximum height of the vehicle,
including the load, on the edge.

minHeight m float64 Permitted minimal height of the load
handling device on the edge.

orientation rad float64 Orientation of the AGV on the edge.

The value orientationType defines if it

has to be interpreted relative to the global
project-specific map coordinate system or
tangential to the edge. In case of
interpreted tangential to the edge, 0.0
denotes driving forwards and PI denotes
driving backwards.
Example: orientation Pi/2 rad will lead to a
rotation of 90 degrees.

If the AGV starts in a different orientation,
rotate the vehicle on the edge to the

desired orientation, if rotationAllowed

is set to "true".

If rotationAllowed is "false", rotate

before entering the edge.
If that is not possible, reject the order.

VDA 5050 Version 2.1.0, May 2024 27

Copyright 2024

Object structure Unit Data type Description

If no trajectory is defined, apply the rotation
to the direct path between the two
connecting nodes of the edge.
If a trajectory is defined for the edge, apply
the orientation to the trajectory.

orientationType string Enum {'GLOBAL', 'TANGENTIAL'}:
'GLOBAL': relative to the global project-
specific map coordinate system;
'TANGENTIAL': tangential to the edge.

If not defined, the default value is
'TANGENTIAL'.

direction string Sets direction at junctions for line-guided or
wire-guided vehicles, to be defined initially
(vehicle-individual).
Examples: "left", "right", "straight".

rotationAllowed boolean "true": rotation is allowed on the edge.
"false": rotation is not allowed on the edge.

Optional:
No limit, if not set.

maxRotationSpeed rad/s float64 Maximum rotation speed

Optional:
No limit, if not set.

trajectory JSON object Trajectory JSON object for this edge as
NURBS.
Defines the path, on which the AGV should
move between the start node and the end
node of the edge.

Optional:
Can be omitted, if the AGV cannot process
trajectories or if the AGV plans its own
trajectory.

length m float64 Length of the path from the start node to
the end node

Optional:
This value is used by line-guided AGVs to
decrease their speed before reaching a
stop position.

corridor JSON object Definition of boundaries in which a vehicle
can deviate from its trajectory, e.g., to avoid
obstacles.

action [action]

}

 array Array of actions to be executed on the
edge.
Empty array, if no actions required.
An action triggered by an edge will only be
active for the time that the AGV is
traversing the edge which triggered the
action.
When the AGV leaves the edge, the action

VDA 5050 Version 2.1.0, May 2024 28

Copyright 2024

Object structure Unit Data type Description

will stop and the state before entering the
edge will be restored.

trajectory { JSON object

degree float64 Range: [1.0 ... float64.max]

Degree of the NURBS curve defining the
trajectory.

If not defined, the default value is 1.

knotVector [float64] array Range: [0.0 … 1.0]

Array of knot values of the NURBS.

knotVector has size of number of control
points + degree + 1.

controlPoints
[controlPoint]

}

 array Array of controlPoint objects defining the
control points of the NURBS, explicitly
including the start and end point.

Object structure Unit Data type Description

controlPoint { JSON object

x float64 X-coordinate described in the world
coordinate system.

y float64 Y-coordinate described in the world
coordinate system.

weight float64 Range: [0.0 ... float64.max]

The weight of the control point on the curve.
When not defined, the default will be 1.0.

}

Object structure Unit Data type Description

corridor { JSON object

leftWidth m float64 Range: [0.0 ... float64.max]
Defines the width of the corridor in meters
to the left related to the trajectory of the
vehicle (see Figure 13).

rightWidth m float64 Range: [0.0 ... float64.max]
Defines the width of the corridor in meters
to the right related to the trajectory of the
vehicle (see Figure 13).

corridorRefPoint

}

 string Defines whether the boundaries are valid
for the kinematic center or the contour of
the vehicle. If not specified the boundaries
are valid to the vehicles kinematic center.
Enum {'KINEMATICCENTER', 'CONTOUR'}

VDA 5050 Version 2.1.0, May 2024 29

Copyright 2024

6.7 Maps

To ensure consistent navigation among different types of AGVs, the position is always
specified in reference to the project-specific coordinate system (see Figure 11). For the

differentiation between different levels of a site or location, a unique mapId is used. The map

coordinate system is to be specified as a right-handed coordinate system with the z-axis
pointing skywards. A positive rotation therefore is to be understood as a counterclockwise
rotation. The vehicle coordinate system is also specified as a right-handed coordinate system
with the x-axis pointing in the forward direction of the vehicle and the z-axis pointing upward.
The vehicle reference point is defined as (0,0,0) in the vehicle reference frame, unless
specified otherwise. This is in accordance with Section 2.11 in DIN ISO 8855.

Figure 11 Coordinate system with sample AGV and orientation

The X, Y, and Z coordinates shall be given in meters. The orientation shall be in radians and
shall be within +Pi and –Pi.

VDA 5050 Version 2.1.0, May 2024 30

Copyright 2024

Figure 12 Coordinate systems for map and vehicle

6.7.1 Map distribution

To enable an automatic map distribution and intelligent management of restarting the vehicles
if necessary, a standardized way to distribute maps is introduced.

The map files to be distributed are stored on a dedicated map server that is accessible by the
vehicles. To ensure efficient transmission, each transmission should consist of a single file. If
multiple maps or files are required, they should be bundled or packed into a single file. The
process of transferring a map from the map server to a vehicle is a pull operation, initiated by
the master control issuing a download command using an instantAction.

Each map is uniquely identified by a combination of a map identifier (field mapId) and a map

version (field mapVersion). The map identifier describes a specific area of the vehicle's

physical workspace, and the map version indicates updates to previous versions. Before
accepting a new order, the vehicle shall check that there is a map on the vehicle for each
map identifier in the requested order. It is the responsibility of the master control to ensure
that the correct maps are activated to operate the vehicle.

In order to minimize downtime and make it easier for the master control to synchronize the
activation of new maps, it is essential that maps are pre-loaded or buffered on the vehicles.
The status of the maps on the vehicle can be accessed via the vehicle state channel. It's
important to note that transferring a map to an AGV and then activating the map are different
processes. To activate a pre-loaded map on a vehicle, the master control sends an instant
action. In this case, any other map with the same map identifier but a different map version is
automatically disabled. Maps can be deleted by the master control with another instant
action. The result of this process is shown in the vehicle state.

The map distribution process is shown in Figure 13.

VDA 5050 Version 2.1.0, May 2024 31

Copyright 2024

Figure 13 Communication required between master control, AGV and map server to download, enable,

and delete a map.

VDA 5050 Version 2.1.0, May 2024 32

Copyright 2024

6.7.2 Maps in the vehicle state

The mapId field in the agvPosition of the state represents the currently active map.

Information about the maps available on a vehicle is presented in the maps array, which is a

component of the state message. Each entry in this array is a JSON object consisting of the
mandatory fields mapId, mapVersion, and mapStatus, which can be either 'ENABLED' or

'DISABLED'. An 'ENABLED' map can be used by the vehicle if necessary. A 'DISABLED' map
shall not be used. The status of the download process is indicated by the current action not
being completed. Errors are also reported in the state.

Note that multiple maps with different mapId can be enabled at the same time. There can

only be one version of maps with the same mapId enabled at a time. If the maps array is

empty, this means that there are currently no maps available on the vehicle.

6.7.3 Map download

The map download is triggered by the downloadMap instant action from the Master Control.

This command contains the mandatory parameters mapId and mapDownloadLink under

which the map is stored on the map server and which can be accessed by the vehicle.

The AGV sets the actionStatus to 'RUNNING' as soon as it starts downloading the map file.

If the download is successful, the actionStatus is updated to 'FINISHED'. If the download is

unsuccessful, the status is set to 'FAILED'. Once the download has been successfully
completed, the map shall be added to the array of maps in the state. Maps shall not be

reported in the state, before they are ready to be enabled.

It is important to ensure that the process of downloading a map does not modify, delete,
enable, or disable any existing maps on the vehicle. The vehicle shall reject the download of
a map with a mapId and mapVersion that is already on the vehicle. An error shall be

reported, and the status of the instant action shall be set to 'FAILED'. The master control shall
first delete the map on the vehicle and then restart the download.

6.7.4 Enable downloaded maps

There are two ways to enable a map on a vehicle:

1. Master control enables map: Use the enableMap instant action to set a map to

'ENABLED' on the vehicle. Other Versions of the same mapId with different mapVersion

are set to 'DISABLED'.

2. Manually enable a map on the vehicle: In some cases, it might be necessary to
enable the maps on the vehicle directly. The result shall be reported in the vehicle state.

It is the responsibility of the master control to ensure that the correct maps are activated on
the vehicle when sending the corresponding mapId as part of a nodePosition in an order. If

the vehicle is to be set to a specific position on a new map, the initPosition instant action

is used.

6.7.5 Delete maps on vehicle

The master control can request the deletion of a specific map from a vehicle. This is done
with the instant action deleteMap. When a vehicle runs out of memory, it should report this to

the master control, which can then initiate the deletion of maps. The vehicle itself is not
allowed to delete maps. After successfully deleting a map, it is important to remove that
map's entry from the vehicle's array of maps in the vehicle state.

VDA 5050 Version 2.1.0, May 2024 33

Copyright 2024

6.8 Actions

If the AGV supports actions other than driving, these actions are executed via the action field
that is attached to either a node or an edge, or sent via the separate topic instantActions (see
Section 6.9 Topic: "instantActions" (from master to control to AGV).

Actions that are to be executed on an edge shall only run while the AGV is on the edge (see
Section 6.10.2 Traversal of nodes and entering/leaving edges, triggering of actions.

Actions that are triggered on nodes can run as long as they need to run. Actions on nodes
should be self-terminating (e.g., an audio signal that lasts for five seconds or a pick action,
that is finished after picking up a load) or should be formulated pairwise (e.g.,
activateWarningLights and deactivateWarningLights), although there may be exceptions.

The following section presents predefined actions that shall be used by the AGV, if the AGV's
capabilities map to the action description. If there is a sensible way to use the defined
parameters, they shall be used. Additional parameters can be defined, if they are needed to
execute an action successfully.

If there is no way to map some action to one of the actions of the following section, the AGV
manufacturer can define additional actions that shall be used by master control.

VDA 5050 Version 2.1.0, May 2024 34

Copyright 2024

6.8.1 Definition, parameters, effects and scope of predefined actions

general scope

action counter
action

description idempotent parameters linked state instant node edge

startPause stopPause Activates the pause mode.
A linked state is required, because
many AGVs can be paused by using a
hardware switch.
No more AGV driving movements -
reaching next node is not necessary.
Actions can continue.
Order is resumable.

yes - paused yes no no

stopPause startPause Deactivates the pause mode.
Movement and all other actions will be
resumed (if any).
A linked state is required because many
AGVs can be paused by using a
hardware switch.
stopPause can also restart vehicles that
were stopped with a hardware button
that triggered startPause (if configured).

yes - paused yes no no

startCharging stopCharging Activates the charging process.
Charging can be done on a charging
spot (vehicle standing) or on a charging
lane (while driving).
Protection against overcharging is
responsibility of the vehicle.

yes - .batteryState.charging yes yes no

stopCharging startCharging Deactivates the charging process to
send a new order.
The charging process can also be
interrupted by the vehicle / charging
station, e.g., if the battery is full.
Battery state is only allowed to be
"false", when AGV is ready to receive
orders.

yes - .batteryState.charging yes yes no

VDA 5050 Version 2.1.0, May 2024 35

Copyright 2024

general scope

action counter
action

description idempotent parameters linked state instant node edge

initPosition - Resets (overrides) the pose of the AGV
with the given parameters.

yes x (float64)
y (float64)
theta (float64)
mapId (string)
lastNodeId (string)

.agvPosition.x

.agvPosition.y

.agvPosition.theta

.agvPosition.mapId

.lastNodeId

.maps

yes yes
(Elevat
or)

no

enableMap - Enable a previously downloaded map
explicitly to be used in orders without
initializing a new position.

yes mapId (string)
mapVersion (string)

.maps yes yes no

downloadMap - Trigger the download of a new map.
Active during the download. Errors
reported in vehicle state. Finished after
verifying the successful download,
preparing the map for use and setting
the map in the state.

yes mapId (string)
mapVersion (string)
mapDownloadLink
(string)
mapHash (string,
optional)

.maps yes no no

deleteMap - Trigger the removal of a map from the
vehicle memory.

yes mapId (string)
mapVersion (string)

.maps yes no no

stateRequest - Requests the AGV to send a new state
report.

yes - - yes no no

logReport - Requests the AGV to generate and
store a log report.

yes reason
(string)

- yes no no

pick drop

(if automated)

Request the AGV to pick a load.
AGVs with multiple load handling
devices can process multiple pick
operations in parallel.
In this case, the parameter lhd needs to
be present (e.g., LHD1).
The parameter stationType informs how
the pick operation is handled in detail
(e.g., floor location, rack location,
passive conveyor, active conveyor,
etc.).
The load type informs about the load
unit and can be used to switch field for
example (e.g., EPAL, INDU, etc).

no lhd (string, optional)
stationType (string)
stationName(string,
optional)
loadType (string)
loadId(string,
optional)
height (float64)
(optional)
defines bottom of
the load related to
the floor
depth (float64)
(optional) for

.load no yes yes

VDA 5050 Version 2.1.0, May 2024 36

Copyright 2024

general scope

action counter
action

description idempotent parameters linked state instant node edge

For preparing the load handling device
(e.g., pre-lift operations based on the
height parameter), the action could be
announced in the horizon in advance.
But, pre-Lift operations, etc., are not
reported as 'RUNNING' in the AGV
state, because the associated node is
not released yet.
If on an edge, the vehicle can use its
sensing device to detect the position for
picking the node.

forklifts
side(string)
(optional) e.g.,
conveyor

drop pick

(if automated)

Request the AGV to drop a load.
See action pick for more details.

no lhd (string, optional)
stationType (string,
optional)
stationName (string,
optional)
loadType (string,
optional)
loadId(string,
optional)
height (float64,
optional)
depth (float64,
optional)
…

.load no yes yes

detectObject - AGV detects object (e.g., load, charging
spot, free parking position).

yes objectType(string,
optional)

- no yes yes

finePositioning - On a node, AGV will position exactly on
a target.
The AGV is allowed to deviate from its
node position.
On an edge, AGV will e.g., align on
stationary equipment while traversing
an edge.
InstantAction: AGV starts positioning
exactly on a target.

yes stationType(string,
optional)
stationName(string,
optional)

- no yes yes

VDA 5050 Version 2.1.0, May 2024 37

Copyright 2024

6.8.2 Predefined action definitions, description of their states

 action states

action 'INITIALIZING' 'RUNNING' 'PAUSED' 'FINISHED' 'FAILED'

startPause - Activation of the mode
is in preparation.
If the AGV supports an
instant transition, this
state can be omitted.

- Vehicle stands still.
All actions will be paused.
The pause mode is activated.
The AGV reports .paused:
"true".

The pause mode cannot be
activated for some reason
(e.g., overridden by
hardware switch).

stopPause - Deactivation of the
mode is in preparation.
If the AGV supports an
instant transition, this
state can be omitted.

- The pause mode is
deactivated.
All paused actions will be
resumed.
The AGV reports .paused:
"false".

The pause mode cannot be
deactivated for some
reason (e.g., overwritten by
hardware switch).

startCharging - Activation of the
charging process is in

- The charging process is
started.

The charging process
could not be started for

general scope

action counter
action

description idempotent parameters linked state instant node edge

waitForTrigger - AGV has to wait for a trigger on the
AGV (e.g., button press, manual
loading).
Master control is responsible to handle
the timeout and has to cancel the order
if necessary.

yes triggerType(string) - no yes no

cancelOrder - AGV stops as soon as possible.
This could be immediately or on the
next node.
Then the order is deleted. All actions
are canceled.

yes - - yes no no

factsheetRequest - Requests the AGV to send a factsheet yes - - yes no no

VDA 5050 Version 2.1.0, May 2024 38

Copyright 2024

 action states

action 'INITIALIZING' 'RUNNING' 'PAUSED' 'FINISHED' 'FAILED'

progress
(communication with
charger is running).
If the AGV supports an
instant transition, this
state can be omitted.

The AGV reports
.batteryState.charging: "true".

some reason (e.g., not
aligned to charger).
Charging problems should
correspond with an error.

stopCharging - Deactivation of the
charging process is in
progress
(communication with
charger is running).
If the AGV supports an
instant transition, this
state can be omitted.

- The charging process is
stopped.
The AGV reports
.batteryState.charging: "false"

The charging process could
not be stopped for some
reason (e.g., not aligned to
charger).
Charging problems should
correspond with an error.

initPosition - Initializing of the new
pose in progress
(confidence checks,
etc.).
If the AGV supports an
instant transition, this
state can be omitted.

- The pose is reset.
The AGV reports
.agvPosition.x = x,
.agvPosition.y = y,
.agvPosition.theta = theta
.agvPosition.mapId = mapId
.agvPosition.lastNodeId =
lastNodeId

The pose is not valid or
cannot be reset.
General localization
problems should
correspond with an error.

downloadMap Initialize the
connection to
the map server.

AGV is downloading the
map, until download is
finished.

- AGV updates its state by
setting the mapId/mapVersion
and the corresponding
mapStatus to 'DISABLED'.

The download failed,
updated in vehicle state
(e.g., connection lost, Map
server unreachable,
mapId/mapVersion not
existing on map server).

VDA 5050 Version 2.1.0, May 2024 39

Copyright 2024

 action states

action 'INITIALIZING' 'RUNNING' 'PAUSED' 'FINISHED' 'FAILED'

enableMap - AGV enables the map
with the requested
mapId and mapVersion
while disabling other
versions with the same
mapId.

- The AGV updates the
corresponding mapStatus of
the requested map to
‘ENABLED’ and the other
versions with same mapId to
‘DISABLED’'.

The requested
mapId/mapVersion
combination does not exist.

deleteMap - AGV deletes map with
requested mapId and
mapVersion from its
internal memory.

- AGV removes
mapId/mapVersion from its
state.

Can not delete map, if map
is currently in use. The
requested
mapId/mapVersion
combination was already
deleted before.

stateRequest - - - The state has been
communicated

-

logReport - The report is in
generating.
If the AGV supports an
instant generation, this
state can be omitted.

- The report is stored.
The name of the log will be
reported in status.

The report can not be
stored (e.g., no space).

pick Initializing of
the pick
process, e.g.,
outstanding lift
operations.

The pick process is
running (AGV is moving
into station, load
handling device is busy,
communication with
station is running, etc.).

The pick
process is
being paused,
e.g., if a safety
field is violated.
After removing
the violation,
the pick
process
continues.

Pick is done.
Load has entered the AGV and
AGV reports new load state.

Pick failed, e.g., station is
unexpected empty.
Failed pick operations
should correspond with an
error.

VDA 5050 Version 2.1.0, May 2024 40

Copyright 2024

 action states

action 'INITIALIZING' 'RUNNING' 'PAUSED' 'FINISHED' 'FAILED'

drop Initializing of
the drop
process, e.g.,
outstanding lift
operations.

The drop process is
running (AGV is moving
into station, load
handling device is busy,
communication with
station is running, etc.).

The drop
process is
being paused,
e.g., if a safety
field is violated.
After removing
the violation the
drop process
continues.

Drop is done.
Load has left the AGV and AGV
reports new load state.

Drop failed, e.g., station is
unexpected occupied.
Failed drop operations
should correspond with an
error.

detectObject - Object detection is
running.

- Object has been detected. AGV could not detect the
object.

finePositioning - AGV positions itself
exactly on a target.

The fine
positioning
process is
being paused,
e.g., if a safety
field is violated.
After removing
the violation,
the fine
positioning
continues.

Goal position in reference to
the station is reached.

Goal position in reference
to the station could not be
reached.

waitForTrigger - AGV is waiting for the
trigger

- Trigger has been triggered. waitForTrigger fails, if order
has been canceled.

cancelOrder - AGV is stopping or
driving, until it reaches
the next node.

- AGV stands still and has
canceled the order.

-

factsheetRequest - - - The factsheet has been
communicated

-

VDA 5050 Version 2.1.0, May 2024 41

Copyright 2024

6.9 Topic: "instantActions" (from master to control to

AGV)

In certain cases, it is necessary to send actions to the AGV that need to be performed
immediately. This is made possible by publishing an instantAction message to the topic
instantActions. instantActions shall not conflict with the content of the AGV's current order
(e.g., instantAction to lower fork, while order says to raise fork).

Some examples for which instant actions could be relevant are:

• pause the AGV without changing anything in the current order;

• resume order after pause;

• activate signal (optical, audio, etc.).

For additional information, see Section 7 Best practice.

Object structure Data type Description

headerId uint32 Header ID of the message.
The header ID is defined per topic and incremented by 1
with each sent (but not necessarily received) message.

timestamp string Timestamp (ISO 8601, UTC); YYYY-MM-DDTHH:mm:ss.ffZ
(e.g., "2017-04-15T11:40:03.12Z")

version string Version of the protocol [Major].[Minor].[Patch] (e.g., 1.3.2).

manufacturer string Manufacturer of the AGV.

serialNumber string Serial number of the AGV.

actions [action] array Array of actions that need to be performed immediately and
are not part of the regular order.

When an AGV receives an instantAction, an appropriate actionStatus is added to the
actionStates array of the AGV state. The actionStatus is updated according to the progress of
the action. See also Figure 16 for the different transitions of an actionStatus.

6.10 Topic: "state" (from AGV to master control)

The AGV state will be transmitted on only one topic. Compared to separate messages (e.g.,
for orders, battery state and errors) using one topic will reduce the workload of the broker and
the master control for handling messages, while also keeping the information about the AGV
state synchronized.

AGV state message will be published with occurrence of relevant events or at the latest every
30s via MQTT broker to master control.

Events that trigger the transmission of the state message are:

• Receiving an order

• Receiving an order update

• Changes in the load status

• Errors or warnings

• Driving over a node

• Switching the operating mode

• Change in the driving field

• Change in the nodeStates, edgeStates, actionStates or maps

There should be an effort to curb the amount of communication. If two events correlate with
each other (e.g., the receiving of a new order usually forces an update of the node- and
edgeStates; as does the driving over a node), it is sensible to trigger one state update instead
of multiple.

VDA 5050 Version 2.1.0, May 2024 42

Copyright 2024

6.10.1 Concept and Logic

The order progress is tracked by the nodeStates and edgeStates. Additionally, if the AGV is

able to derive its current position, it can publish its position via the position field.

If the AGV plans the path by itself, it shall communicate its calculated trajectory (including
base and horizon) in the form of NURBS via the trajectory object in the state message,

unless master control cannot use this field, and it was agreed during integration, that this field
shall not be sent. After nodes are released by master control, the AGV is not allowed to
change its trajectory.

The nodeStates and edgeStates includes all nodes/edges, that the AGV still shall traverse.

Figure 14 Order information provided by the state topic. Only the ID of the last node and the remaining

nodes and edges are transmitted

6.10.2 Traversal of nodes and entering/leaving edges, triggering of

actions

The AGV decides on its own, when a node should count as traversed. Generally, the AGV's
control point should be within the node's allowedDeviationXY and its orientation within

allowedDeviationTheta. If the edge attribute corridor of the subsequent edge is set,

these boundaries should be met additionally.

The AGV reports the traversal of a node by removing its nodeState from the nodeStates

array and setting the lastNodeId, lastNodeSequenceId to the traversed node's values.

As soon as the AGV reports the node as traversed, the AGV shall trigger the actions
associated with the node, if any.

The traversal of a node also marks the leaving of the edge leading up to the node. The edge
shall then be removed from the edgeStates and the actions that were active on the edge

shall be finished.

The traversal of the node also marks the moment, when the AGV enters the following edge, if
there is one. The edge's actions shall now be triggered. An exception to this rule is, if the
AGV has to pause on the edge (because of a soft or hard blocking edge, or otherwise) – then
the AGV enters the edge after it begins moving again.

VDA 5050 Version 2.1.0, May 2024 43

Copyright 2024

Figure 15 Depiction of nodeStates, edgeStates, actionStates during order handling

6.10.3 Base request

If the AGV detects that its base is running low, it can set the newBaseRequest flag to "true" to

prevent unnecessary braking.

6.10.4 Information

The AGV can submit arbitrary additional information to master control via the information

array. It is up to the AGV how long it reports information via an information message.

Master control shall not use the info messages for logic, it shall only be used for visualization
and debugging purposes.

6.10.5 Errors

The AGV reports errors via the errors array. Errors have two levels: 'WARNING' and

'FATAL'. A 'WARNING' is a self-resolving error, e.g., a field violation. A 'FATAL' error needs
human intervention. Errors can pass references that help with finding the cause of the error
via the errorReferences array.

VDA 5050 Version 2.1.0, May 2024 44

Copyright 2024

6.10.6 Implementation of the state message

Object structure Unit Data type Description

headerId

uint32 Header ID of the message.
The headerId is defined per topic and
incremented by 1 with each sent (but
not necessarily received) message.

timestamp

string Timestamp (ISO 8601, UTC); YYYY-
MM-DDTHH:mm:ss.ffZ (e.g., "2017-
04-15T11:40:03.12Z").

version

string Version of the protocol
[Major].[Minor].[Patch] (e.g., 1.3.2).

manufacturer

string Manufacturer of the AGV.

serialNumber

string Serial number of the AGV.

orderId

string Unique order identification of the
current order or the previously
finished order.
The orderId is kept until a new order
is received.
Empty string (""), if no previous
orderId is available.

orderUpdateId

uint32 Order update identification to identify,
that an order update has been
accepted by the AGV.
"0" if no previous orderUpdateId is
available.

zoneSetId

string Unique ID of the zone set, that the
AGV currently uses for path planning.
Shall be the same as the one used in
the order.
Optional: If the AGV does not use
zones, this field can be omitted.

lastNodeId

string Node ID of last reached node or, if
AGV is currently on a node, current
node (e.g., „node7”). Empty string
(""), if no lastNodeId is available.

lastNodeSequenceId

uint32 Sequence ID of the last reached
node or, if AGV is currently on a
node, Sequence ID of current node.
"0" if no lastNodeSequenceId is
available.

nodeStates [nodeState]

array Array of nodeState objects that need
to be traversed for fulfilling the order
(empty array if idle)

edgeStates [edgeState]

array Array of edgeState objects that need
to be traversed for fulfilling the order
(empty array if idle)

VDA 5050 Version 2.1.0, May 2024 45

Copyright 2024

Object structure Unit Data type Description

agvPosition

JSON object Current position of the AGV on the
map.

Optional:

Can only be omitted for AGV without
the capability to localize themselves,
e.g., line-guided AGVs.

velocity

JSON object The AGV velocity in vehicle
coordinates.

loads [load]

array Loads, that are currently handled by
the AGV.

Optional: If the AGV cannot
determine the load state, this field
shall be omitted completely and not
be reported as an empty array.
If the AGV can determine the load
state, but the array is empty, the AGV
is considered unloaded.

driving

boolean "true": indicates, that the AGV is
driving and/or rotating. Other
movements of the AGV (e.g., lift
movements) are not included here.
"false": indicates that the AGV is
neither driving nor rotating.

paused

boolean "true": AGV is currently in a paused
state, either because of the push of a
physical button on the AGV or
because of an instantAction.
The AGV can resume the order.

"false": The AGV is currently not in a
paused state.

newBaseRequest

boolean "true": AGV is almost at the end of
the base and will reduce speed, if no
new base is transmitted.
Trigger for master control to send a
new base.
"false": no base update required.

distanceSinceLastNode meter float64 Used by line-guided vehicles to
indicate the distance it has been
driving past the "lastNodeId".
Distance is in meters.

VDA 5050 Version 2.1.0, May 2024 46

Copyright 2024

Object structure Unit Data type Description

actionStates
[actionState]

array Contains an array of all actions from

the current order and all received
instantActions since the last order.
The action states are kept until a new
order is received. Action states,
except for running instant actions,
are removed upon receiving a new
order.
This may include actions from
previous nodes, that are still in
progress.

When an action is completed, an
updated state message is published
with actionStatus set to 'FINISHED'
and if applicable with the
corresponding

resultDescription.

batteryState

JSON object Contains all battery-related
information.

operatingMode

string Enum {'AUTOMATIC',
'SEMIAUTOMATIC', 'MANUAL',
'SERVICE', 'TEACHIN'}
For additional information, see Table
1 in Section 6.10.6 Implementation of
the state message

errors [error]

array Array of error objects.
All active errors of the AGV should be
in the array.
An empty array indicates that the
AGV has no active errors.

information [info]

array Array of info objects.
An empty array indicates, that the
AGV has no information.
This should only be used for
visualization or debugging – it shall
not be used for logic in master
control.

safetyState

JSON object Contains all safety-related
information.

Object structure Unit Data type Description

map{ JSON object

mapId string ID of the map describing a defined
area of the vehicle's workspace.

mapVersion string Version of the map.

mapDescription string Additional information on the map.

VDA 5050 Version 2.1.0, May 2024 47

Copyright 2024

Object structure Unit Data type Description

mapStatus

}

 string Enum {'ENABLED', 'DISABLED'}
'ENABLED': Indicates this map is
currently active / used on the AGV. At
most one map with the same mapId
can have its status set to 'ENABLED'.
'DISABLED': Indicates this map
version is currently not enabled on
the AGV and thus could be enabled
or deleted by request.

Object structure Unit Data type Description

nodeState {

JSON object

nodeId

string Unique node identification.

sequenceId

uint32 sequence ID to discern multiple
nodes with same nodeId.

nodeDescription

string Additional information on the node.

released boolean "true" indicates that the node is part
of the base.
"false" indicates that the node is part
of the horizon.

nodePosition

}

JSON object Node position.

The object is defined in 6.6 Topic:
"order" (from master control to AGV)
Optional:
Master control has this information.
Can be sent additionally, e.g., for
debugging purposes.

Object structure Unit Data type Description

edgeState {

JSON object

edgeId

string Unique edge identification.

sequenceId

uint32 sequence ID to differentiate between
multiple edges with the same edgeId.

edgeDescription

string Additional information on the edge.

released

boolean "true" indicates that the edge is part
of the base.
"false" indicates that the edge is part
of the horizon.

trajectory

}

JSON object The trajectory is to be communicated

as NURBS and is defined in Section
6.6.6 Implementation of the order
message
Trajectory segments start from the
point, where the vehicle enters the
edge, and terminate at the point,
where the vehicle reports that the
end node was traversed.

VDA 5050 Version 2.1.0, May 2024 48

Copyright 2024

Object structure Unit Data type Description

agvPosition {

JSON object Defines the position on a map in
world coordinates. Each floor has its
own map.

positionInitialized

boolean “true”: position is initialized.
“false”: position is not initialized.

localizationScore

float64 Range: [0.0 ... 1.0]
Describes the quality of the
localization and therefore, can be
used, e.g., by SLAM AGV to
describe, how accurate the current
position information is.
0.0: position unknown
1.0: position known
Optional for vehicles that cannot
estimate their localization score.
Only for logging and visualization
purposes.

deviationRange m float64 Value for the deviation range of the
position in meters.
Optional for vehicles that cannot
estimate their deviation e.g., grid-
based localization.
Only for logging and visualization
purposes.

x m float64 X-position on the map in reference to
the map coordinate system.
Precision is up to the specific
implementation.

y m float64 Y-position on the map in reference to
the map coordinate system.
Precision is up to the specific
implementation.

theta

float64 Range: [-Pi ... Pi]
Orientation of the AGV.

mapId

string Unique identification of the map in
which the position is referenced.
Each map has the same origin of
coordinates.
When an AGV uses an elevator from
a departure floor to a destination
floor, it leaves the map of the
departure floor and spawns on the
corresponding elevator node on the
map of the destination floor.

mapDescription
}

string Additional information on the map.

Object structure Unit Data type Description

velocity {

JSON object

vx m/s float64 The AGV's velocity in its X-direction.

VDA 5050 Version 2.1.0, May 2024 49

Copyright 2024

Object structure Unit Data type Description

vy m/s float64 The AGV's velocity in its Y-direction.

omega
}

Rad/s float64 The AGV's turning speed around its
Z-axis.

Object structure Unit Data type Description

load {

JSON object

loadId

string Unique identification of the load (e.g.,
barcode or RFID).
Empty field, if the AGV can identify
the load but didn't identify the load
yet.
Optional if the AGV cannot identify
the load.

loadType

string Type of load.

loadPosition

string Indicates, which load
handling/carrying unit of the AGV is
used, e.g., in case the AGV has
multiple spots/positions to carry
loads.
For example: "front", "back",
"positionC1", etc.
Optional for vehicles with only one
loadPosition

boundingBoxReference

JSON object Point of reference for the location of
the bounding box.
The point of reference is always the
center of the bounding box's bottom
surface (at height = 0) and is
described in coordinates of the
AGV's coordinate system.

loadDimensions

JSON object Dimensions of the load's bounding
box in meters.

weight
}

kg float64 Range: [0.0 ... float64.max]
Absolute weight of the load
measured in kg.

Object structure Unit Data type Description

boundingBoxReference
{

JSON object Point of reference for the location of

the bounding box.
The point of reference is always the
center of the bounding box's bottom
surface (at height = 0) and is
described in coordinates of the
AGV's coordinate system.

x

float64 X-coordinate of the point of
reference.

y

float64 Y-coordinate of the point of
reference.

VDA 5050 Version 2.1.0, May 2024 50

Copyright 2024

Object structure Unit Data type Description

z

float 64 Z-coordinate of the point of
reference.

theta
}

float64 Orientation of the loads bounding

box.
Important for tuggers, trains, etc.

Object structure Unit Data type Description

loadDimensions {

JSON object Dimensions of the load's bounding
box in meters.

length m float64 Absolute length of the load's
bounding box.

width m float64 Absolute width of the load's bounding
box.

height
}

m float64 Absolute height of the load's
bounding box.

Optional:

Set value only if known.

Object structure Unit Data type Description

actionState {

JSON object

actionId

string Unique identifier of the action.

actionType

string Type of the action.
Optional: Only for informational or
visualization purposes. MC is aware
of action type as dispatched in the
order.

actionDescription

string Additional information on the current
action.

actionStatus

string Enum {'WAITING', 'INITIALIZING',
'RUNNING', 'PAUSED', 'FINISHED',
'FAILED'}
See Section 6.11 Action states.

resultDescription
}

string Description of the result, e.g., the

result of an RFID reading.
Errors will be transmitted in errors.

Object structure Unit Data type Description

batteryState {

JSON object

batteryCharge % float64 State of Charge:
if AGV only provides values for good
or bad battery levels, these will be
indicated as 20% (bad) and 80%
(good).

VDA 5050 Version 2.1.0, May 2024 51

Copyright 2024

Object structure Unit Data type Description

batteryVoltage V float64 Battery Voltage.

batteryHealth % int8 Range: [0 ... 100]
State describing the battery's health.

charging

boolean “true”: charging in progress.
“false”: AGV is currently not charging.

reach
}

m uint32 Range: [0 ... uint32.max]
Estimated reach with current state of
charge.

Object structure Unit Data type Description

error {

JSON object

errorType

string Type/name of error

errorReferences
[errorReference]

array Array of references (e.g., nodeId,

edgeId, orderId, actionId, etc.) to
provide more information related to
the error.
For additional information see 7 Best
practice.

errorDescription

string Verbose description providing details
and possible causes of the error.

errorHint string Hint on how to approach or solve the
reported error.

errorLevel
}

string Enum {'WARNING', 'FATAL'}

'WARNING': AGV is ready to start
(e.g., maintenance cycle expiration
warning).
'FATAL': AGV is not in running
condition, user intervention required
(e.g., laser scanner is contaminated).

Object structure Unit Data type Description

errorReference {

JSON object

referenceKey

string Specifies the type of reference used
(e.g., "nodeId", "edgeId", "orderId",
"actionId", etc.).

referenceValue
}

string The value that belongs to the

reference key. For example, the ID of
the node where the error occurred.

Object structure Unit Data type Description

info {

JSON object

infoType

string Type/name of information.

infoReferences
[infoReference]

array Array of references.

VDA 5050 Version 2.1.0, May 2024 52

Copyright 2024

Object structure Unit Data type Description

infoDescription

string Description of the information.

infoLevel
}

string Enum {'DEBUG', 'INFO'}

'DEBUG': used for debugging.
'INFO': used for visualization.

Object structure Unit Data type Description

infoReference {

JSON object

referenceKey

string References the type of reference
(e.g., headerId, orderId, actionId,
etc.).

referenceValue
}

string References the value, which belongs

to the reference key.

Object structure Unit Data type Description

safetyState {

JSON object

eStop

string Enum {'AUTOACK', 'MANUAL',
'REMOTE', 'NONE'}
Acknowledge-Type of eStop:
'AUTOACK': auto-acknowledgeable
e-stop is activated, e.g., by bumper
or protective field.
'MANUAL': e-stop hast to be
acknowledged manually at the
vehicle.
'REMOTE': facility e-stop has to be
acknowledged remotely.
'NONE': no e-stop activated.

fieldViolation
}

boolean Protective field violation.

"true":field is violated
"false":field is not violated.

VDA 5050 Version 2.1.0, May 2024 53

Copyright 2024

Operating Mode Description

The following description lists the operatingMode of the topic "state".

Identifier Description

AUTOMATIC AGV is under full control of the master control.
AGV drives and executes actions based on orders from the master
control.

SEMIAUTOMATIC AGV is under control of the master control.
AGV drives and executes actions based on orders from the master
control.
The driving speed is controlled by the HMI (speed can't exceed the
speed of automatic mode).
The steering is under automatic control (non-safe HMI possible).

MANUAL Master control is not in control of the AGV.
Supervisor doesn't send driving order or actions to the AGV.
HMI can be used to control the steering and velocity and handling
device of the AGV.
Location of the AGV is sent to the master control.
When AGV enters or leaves this mode, it immediately clears all the
orders (safe HMI required).

SERVICE Master control is not in control of the AGV.
Master control doesn't send driving order or actions to the AGV.
Authorized personnel can reconfigure the AGV.

TEACHIN Master control is not in control of the AGV.
Supervisor doesn't send driving order or actions to the AGV.
The AGV is being taught, e.g., mapping is done by a master control.

Table 1 The operating modes and their meaning

6.11 Action states

When an AGV receives an action (either attached to a node or edge or via an

instantAction), it shall represent this action with an actionState in its actionStates

array.

actionStates describe in the field actionStatus at which stage of the action's life cycle the

action is.

Table 2 describes, which value the enum actionStatus can hold.

actionStatus Description

'WAITING' Action was received by AGV but the node where it triggers was not yet
reached or the edge where it is active was not yet entered.

'INITIALIZING' Action was triggered, preparatory measures are initiated.

'RUNNING' The action is running.

'PAUSED' The action is paused because of a pause instantAction or external trigger
(pause button on AGV)

'FINISHED' The action is finished.

A result is reported via the resultDescription.

'FAILED' Action could not be finished for whatever reason.

Table 2 The acceptable values for the actionStatus field

A state transition diagram is provided in Figure 16.

VDA 5050 Version 2.1.0, May 2024 54

Copyright 2024

Figure 16 All possible status transitions for actionStates

6.12 Action blocking types and sequence

The order of multiple actions in a list define the sequence, in which those actions are to be
executed. The parallel execution of actions is governed by their respective blockingType.

Actions can have three distinct blocking types, described in Table 3.

actionStatus Description

NONE Action can be executed in parallel with other actions and while the vehicle
is driving.

SOFT Action can be executed in parallel with other actions. Vehicle shall not
drive.

HARD Action shall not be executed in parallel with other actions. Vehicle shall not
drive.

Table 3 Action blocking types

If there are multiple actions on the same node with different blocking types, Figure 17
describes how the AGV should handle these actions.

VDA 5050 Version 2.1.0, May 2024 55

Copyright 2024

Figure 17 Handling multiple actions

VDA 5050 Version 2.1.0, May 2024 56

Copyright 2024

6.13 Topic "visualization"

For a near real-time position update the AGV can broadcast its position and velocity on the
topic visualization.

The structure of the position object is the same as the position and velocity object in the
state. For additional information see Section 6.10.6 Implementation of the state message for
the vehicle state. The update rate for this topic is defined by the integrator.

6.14 Topic "connection"

During the connection of an AGV client to the broker, a last will topic and message can be
set, which is published by the broker upon disconnection of the AGV client from the broker.
Thus, the master control can detect a disconnection event by subscribing the connection
topics of all AGV. The disconnection is detected via a heartbeat that is exchanged between
the broker and the client. The interval is configurable in most brokers and should be set
around 15 seconds. The Quality of Service level for the connection topic shall be 1 - At

Least Once.

The suggested last will topic structure is:

uagv/v2/manufacturer/SN/connection

The last will message is defined as a JSON encapsulated message with the following fields:

Identifier Data
type

Description

headerId uint32 Header ID of the message.
The headerId is defined per topic and incremented by 1 with
each sent (but not necessarily received) message.

timestamp string Timestamp (ISO8601, UTC); YYYY-MM-
DDTHH:mm:ss.ffZ(e.g., "2017-04-15T11:40:03.12Z").

version string Version of the protocol [Major].[Minor].[Patch] (e.g., 1.3.2).

manufacturer string Manufacturer of the AGV.

serialNumber string Serial number of the AGV.

connectionState string Enum {'ONLINE', 'OFFLINE', 'CONNECTIONBROKEN'}
'ONLINE': connection between AGV and broker is active.
'OFFLINE': connection between AGV and broker has gone
offline in a coordinated way.
'CONNECTIONBROKEN': The connection between AGV and
broker has unexpectedly ended.

The last will message will not be sent, when a connection is ended in a graceful way by using
an MQTT disconnection command. The last will message is only sent by the broker, if the
connection is unexpectedly interrupted.

Note: Due to the nature of the last will feature in MQTT, the last will message is defined
during the connection phase between the AGV and the MQTT broker. As a result, the
timestamp and headerId fields will always be outdated.

AGV wants to disconnect gracefully:

1. AGV sends "uagv/v2/manufacturer/SN/connection" with connectionState set to

OFFLINE.

2. Disconnect the MQTT connection with a disconnect command.

AGV comes online:

VDA 5050 Version 2.1.0, May 2024 57

Copyright 2024

1. Set the last will to "uagv/v2/manufacturer/SN/connection" with the field
connectionState set to CONNECTIONBROKEN, when the MQTT connection is

created.

2. Send the topic "uagv/v2/manufacturer/SN/connection" with connectionState set to

ONLINE.

All messages on this topic shall be sent with a retained flag.

When connection between the AGV and the broker stops unexpectedly, the broker will send
the last will topic: "uagv/v2/manufacturer/SN/connection" with the field connectionState set

to CONNECTIONBROKEN.

6.15 Topic "factsheet"

The factsheet provides basic information about a specific AGV type series. This information
allows comparison of different AGV types and can be applied for the planning, dimensioning,
and simulation of an AGV system. The factsheet also includes information about AGV
communication interfaces which are required for the integration of an AGV type series into a
VDA-5050-compliant master control.

The values for some fields in the AGV factsheet can only be specified during system
integration, for example the assignment of project-specific load and station types, together
with the list of station and load types which are supported by this AGV.

The factsheet is intended as both a human-readable document and for machine processing,
e.g., an import by the master control application, and thus is specified as a JSON document.

The MC can request the factsheet from the AGV by sending the instant action:
factsheetRequest

All messages on this topic shall be sent with a retained flag.

6.15.1 Factsheet JSON structure

The factsheet consists of the JSON objects listed in the following table.

Field data type description

headerId uint32 Header ID of the message.
The headerId is defined per topic and
incremented by 1 with each sent (but not
necessarily received) message.

timestamp string Timestamp (ISO8601, UTC); YYYY-MM-
DDTHH:mm:ss.ffZ(e.g., "2017-04-
15T11:40:03.12Z").

version string Version of the protocol [Major].[Minor].[Patch]
(e.g., 1.3.2).

manufacturer string Manufacturer of the AGV.

serialNumber string Serial number of the AGV.

typeSpecification JSON object These parameters generally specify the class
and the capabilities of the AGV.

physicalParameters JSON object These parameters specify the basic physical
properties of the AGV.

protocolLimits JSON object Limits for length of identifiers, arrays, strings,
and similar in MQTT communication.

protocolFeatures JSON object Supported features of VDA5050 protocol.

agvGeometry JSON object Detailed definition of AGV geometry.

VDA 5050 Version 2.1.0, May 2024 58

Copyright 2024

Field data type description

loadSpecification JSON object Abstract specification of load capabilities.

localizationParameters JSON object Detailed specification of localization.

vehicleConfig JSON object Summary of current software and hardware
versions on the vehicle and optional network
information.

typeSpecification

This JSON object describes general properties of the AGV type.

Field data type description

seriesName string Free text generalized series name as specified
by manufacturer.

seriesDescription string Free text human-readable description of the AGV
type series.

agvKinematic string Simplified description of AGV kinematics type.
[DIFF, OMNI, THREEWHEEL]
DIFF: differential drive
OMNI: omni-directional vehicle
THREEWHEEL: three-wheel-driven vehicle or
vehicle with similar kinematics

agvClass string Simplified description of AGV class.
[FORKLIFT, CONVEYOR, TUGGER, CARRIER]
FORKLIFT: forklift.
CONVEYOR: AGV with conveyors on it.
TUGGER: tugger.
CARRIER: load carrier with or without lifting unit.

maxLoadMass float64 [kg], Maximum loadable mass.

localizationTypes array of
string

Simplified description of localization type.
Example values:
NATURAL: natural landmarks;
REFLECTOR: laser reflectors;
RFID: RFID tags;
DMC: data matrix code;
SPOT: magnetic spots;
GRID: magnetic grid.

navigationTypes array of
string

Array of path planning types supported by the
AGV, sorted by priority.
Example values:
PHYSICAL_LINE_GUIDED: No path planning,
AGV follows physical installed paths.
VIRTUAL_LINE_GUIDED: AGV goes fixed
(virtual) paths.
AUTONOMOUS: AGV plans its path
autonomously.

VDA 5050 Version 2.1.0, May 2024 59

Copyright 2024

physicalParameters

This JSON object describes physical properties of the AGV.

Field data type description

speedMin float64 [m/s] Minimal controlled continuous speed of the
AGV.

speedMax float64 [m/s] Maximum speed of the AGV.

angularSpeedMin float64 [Rad/s] Minimal controlled continuous rotation
speed of the AGV.

angularSpeedMax float64 [Rad/s] Maximum rotation speed of the AGV.

accelerationMax float64 [m/s²] Maximum acceleration with maximum
load.

decelerationMax float64 [m/s²] Maximum deceleration with maximum
load.

heightMin float64 [m] Minimum height of AGV.

heightMax float64 [m] Maximum height of AGV.

width float64 [m] Width of AGV.

length float64 [m] Length of AGV.

protocolLimits

This JSON object describes the protocol limitations of the AGV. If a parameter is not defined
or set to zero then there is no explicit limit for this parameter.

Field data type description

maxStringLens { JSON object Maximum lengths of strings.

 msgLen uint32 Maximum MQTT message length.

 topicSerialLen uint32 Maximum length of serial number part in
MQTT-topics.Affected
parameters:order.serialNumberinstantAction
s.serialNumberstate.SerialNumbervisualizati
on.serialNumberconnection.serialNumber

 topicElemLen uint32 Maximum length of all other parts in MQTT
topics.
Affected parameters:
order.timestamp
order.version
order.manufacturer
instantActions.timestamp
instantActions.version
instantActions.manufacturer
state.timestamp
state.version
state.manufacturer
visualization.timestamp
visualization.version
visualization.manufacturer
connection.timestamp
connection.version
connection.manufacturer

VDA 5050 Version 2.1.0, May 2024 60

Copyright 2024

Field data type description

 idLen uint32 Maximum length of ID strings.
Affected parameters:
order.orderId
order.zoneSetId
node.nodeId
nodePosition.mapId
action.actionId
edge.edgeId
edge.startNodeId
edge.endNodeId

 idNumericalOnly boolean If "true" ID strings need to contain numerical
values only.

 enumLen uint32 Maximum length of enum and key strings.
Affected parameters:
action.actionType action.blockingType
edge.direction
actionParameter.key
state.operatingMode
load.loadPosition
load.loadType
actionState.actionStatus
error.errorType
error.errorLevel
errorReference.referenceKey
info.infoType
info.infoLevel
safetyState.eStop
connection.connectionState

 loadIdLen uint32 Maximum length of loadId strings.

}

maxArrayLens { JSON object Maximum lengths of arrays.

 order.nodes uint32 Maximum number of nodes per order
processable by the AGV.

 order.edges uint32 Maximum number of edges per order
processable by the AGV.

 node.actions uint32 Maximum number of actions per node
processable by the AGV.

 edge.actions uint32 Maximum number of actions per edge
processable by the AGV.

actions.actionsParameters

uint32 Maximum number of parameters per action
processable by the AGV.

 instantActions uint32 Maximum number of instant actions per
message processable by the AGV.

 trajectory.knotVector uint32 Maximum number of knots per trajectory
processable by the AGV.

 trajectory.controlPoints uint32 Maximum number of control points per
trajectory processable by the AGV.

 state.nodeStates uint32 Maximum number of nodeStates sent by the
AGV, maximum number of nodes in base of
AGV.

VDA 5050 Version 2.1.0, May 2024 61

Copyright 2024

Field data type description

 state.edgeStates uint32 Maximum number of edgeStates sent by the
AGV, maximum number of edges in base of
AGV.

 state.loads uint32 Maximum number of load objects sent by
the AGV.

 state.actionStates uint32 Maximum number of actionStates sent by
the AGV.

 state.errors uint32 Maximum number of errors sent by the AGV
in one state message.

 state.information uint32 Maximum number of information sent by the
AGV in one state message.

 error.errorReferences uint32 Maximum number of error references sent
by the AGV for each error.

information.infoReferences

uint32 Maximum number of info references sent by
the AGV for each information.

}

timing { JSON object Timing information.

 minOrderInterval float32 [s], Minimum interval sending order
messages to the AGV.

 minStateInterval float32 [s], Minimum interval for sending state
messages.

 defaultStateInterval float32 [s], Default interval for sending state
messages, if not defined, the default value
from the main document is used.

 visualizationInterval float32 [s], Default interval for sending messages
on visualization topic.

}

protocolFeatures

This JSON object defines actions and parameters which are supported by the AGV.

Field data type description

optionalParameters
[optionalParameter]

array of
JSON
object

Array of supported and/or required optional
parameters.
Optional parameters that are not listed here are
assumed to be not supported by the AGV.

{

 parameter string Full name of optional parameter, e.g.,
"order.nodes.nodePosition.allowedDeviationTheta".

 support enum Type of support for the optional parameter, the
following values are possible:
'SUPPORTED': optional parameter is supported
like specified.
'REQUIRED': optional parameter is required for
proper AGV operation.

VDA 5050 Version 2.1.0, May 2024 62

Copyright 2024

Field data type description

 description string Free-form text: description of optional parameter,
e.g.,

- Reason, why the optional parameter

direction is necessary for this AGV type

and which values it can contain.

- The parameter nodeMarker shall contain

unsigned integers only.
- NURBS support is limited to straight lines and

circle segments.
}

agvActions
[agvAction]

array of
JSON
object

Array of all actions with parameters supported by
this AGV. This includes standard actions specified
in VDA5050 and manufacturer-specific actions.

{

 actionType string Unique type of action corresponding to
action.actionType.

 actionDescription string Free-form text: description of the action.

 actionScopes array of
enum

Array of allowed scopes for using this action type.
'INSTANT': usable as instantAction.
'NODE': usable on nodes.
'EDGE': usable on edges.
For example: ['INSTANT', 'NODE']

 actionParameters
 [actionParameter]

array of
JSON
object

Array of parameters an action has.
If not defined, the action has no parameters.
The JSON object defined here is a different JSON
object than the one used in Section 6.6.6
Implementation of the order message within nodes
and edges.

 {

 key string Key string for parameter.

 valueDataType enum Data type of value, possible data types are:
'BOOL', 'NUMBER', 'INTEGER', 'FLOAT',
'STRING', 'OBJECT', 'ARRAY'.

 description string Free-form text: description of the parameter.

 isOptional boolean "true": optional parameter.

 }

resultDescription string Free-form text: description of the result.

blockingTypes array of
enum

Array of possible blocking types for defined action.
Enum {'NONE', 'SOFT', 'HARD'}

}

VDA 5050 Version 2.1.0, May 2024 63

Copyright 2024

agvGeometry

This JSON object defines the geometry properties of the AGV, e.g., outlines and wheel
positions.

Field data type description

wheelDefinitions
[wheelDefinition]

array of
JSON object

Array of wheels, containing wheel
arrangement and geometry.

{

 type enum Wheel type
Enum {'DRIVE', 'CASTER', 'FIXED',
'MECANUM'}.

 isActiveDriven boolean "true": wheel is actively driven.

 isActiveSteered boolean "true": wheel is actively steered.

 position { JSON object

 x float64 [m], x-position in AGV coordinate. system

 y float64 [m], y-position in AGV coordinate. system

 theta float64 [rad], orientation of wheel in AGV coordinate
system. Necessary for fixed wheels.

 }

 diameter float64 [m], nominal diameter of wheel.

 width float64 [m], nominal width of wheel.

 centerDisplacement float64 [m], nominal displacement of the wheel's
center to the rotation point (necessary for
caster wheels).
If the parameter is not defined, it is assumed
to be 0.

 constraints string Free-form text: can be used by the
manufacturer to define constraints.

}

envelopes2d
[envelope2d]

array of
JSON object

Array of AGV envelope curves in 2D, e.g.,
the mechanical envelopes for unloaded and
loaded state, the safety fields for different
speed cases.

{

 set string Name of the envelope curve set.

 polygonPoints
 [polygonPoint]

array of
JSON object

Envelope curve as an x/y-polygon polygon
is assumed as closed and shall be non-self-
intersecting.

 {

 x float64 [m], X-position of polygon point.

 y float64 [m], Y-position of polygon point.

 }

 description string Free-form text: description of envelope
curve set.

}

VDA 5050 Version 2.1.0, May 2024 64

Copyright 2024

Field data type description

envelopes3d
[envelope3d]

array of
JSON object

Array of AGV envelope curves in 3D.

{

 set string Name of the envelope curve set.

 format string Format of data, e.g., DXF.

 data JSON object 3D-envelope curve data, format specified in
'format'.

 url string Protocol and URL definition for downloading
the 3D-envelope curve data, e.g.,
ftp://xxx.yyy.com/ac4dgvhoif5tghji.

 description string Free-form text: description of envelope
curve set

}

loadSpecification

This JSON object specifies load handling and supported load types of the AGV.

Field data type description

loadPositions array of
string

Array of load positions / load handling
devices.
This array contains the valid values for the
parameter "state.loads[].loadPosition" and
for the action parameter "lhd" of the actions
pick and drop.
If this array doesn't exist or is empty, the
AGV has no load handling device.

loadSets [loadSet] array of
JSON object

Array of load sets that can be handled by
the AGV

{

 setName string Unique name of the load set, e.g.,
DEFAULT, SET1, etc.

 loadType string Type of load, e.g., EPAL, XLT1200, etc.

 loadPositions array of
string

Array of load positions btw. load handling
devices, this load set is valid for.
If this parameter does not exist or is empty,
this load set is valid for all load handling
devices on this AGV.

boundingBoxReference

JSON object Bounding box reference as defined in
parameter loads[] in state message.

 loadDimensions JSON object Load dimensions as defined in parameter
loads[] in state message.

 maxWeight float64 [kg], maximum weight of load type.

 minLoadhandlingHeight float64 [m], minimum allowed height for handling of
this load type and weight
references to boundingBoxReference.

VDA 5050 Version 2.1.0, May 2024 65

Copyright 2024

Field data type description

 maxLoadhandlingHeight float64 [m], maximum allowed height for handling of
this load type and weight
references to boundingBoxReference.

 minLoadhandlingDepth float64 [m], minimum allowed depth for this load
type and weight
references to boundingBoxReference.

 maxLoadhandlingDepth float64 [m], maximum allowed depth for this load
type and weight
references to boundingBoxReference.

 minLoadhandlingTilt float64 [rad], minimum allowed tilt for this load type
and weight.

 maxLoadhandlingTilt float64 [rad], maximum allowed tilt for this load type
and weight.

 agvSpeedLimit float64 [m/s], maximum allowed speed for this load
type and weight.

 agvAccelerationLimit float64 [m/s²], maximum allowed acceleration for
this load type and weight.

 agvDecelerationLimit float64 [m/s²], maximum allowed deceleration for
this load type and weight.

 pickTime float64 [s], approx. time for picking up the load

 dropTime float64 [s], approx. time for dropping the load.

 description string Free-form text: description of the load
handling set.

}

vehicleConfig

This JSON object details the software and hardware versions running on the vehicle, as well
as a brief summary of network information.

Field data type description

versions[versionInfo] array of JSON
object

Array of key-value pair objects containing
software and hardware information.

 key string Key of the software/hardware version used.
(e.g., softwareVersion)

 value string The version corresponding to the key. (e.g.,
v1.12.4-beta)

}

network { JSON object Information about the vehicle's network
connection. The listed information shall not
be updated while the vehicle is operating.

 dnsServers array of string Array of Domain Name Servers (DNS) used
by the vehicle.

 ntpServers array of string Array of Network Time Protocol (NTP)
servers used by the vehicle.

VDA 5050 Version 2.1.0, May 2024 66

Copyright 2024

Field data type description

 localIpAddress string A priori assigned IP address used to
communicate with the MQTT broker. Note
that this IP address should not be
modified/changed during operations.

 netmask string The subnet mask used in the network
configuration corresponding to the local IP
address.

 defaultGateway string The default gateway used by the vehicle,
corresponding to the local IP address.

 }

7 Best practice

This section includes additional information, which helps in facilitating a common
understanding concurrent with the logic of the protocol.

7.1 Error reference

If an error occurs due to an erroneous order, the AGV should return a meaningful error
reference in the field errorReferences (see Section 6.10.6 Implementation of the state
messageof the state topic). This can include the following information:

• headerId

• Topic (order or instantAction)

• orderId and orderUpdateId if error was caused by an order update

• actionId if error was caused by an action.

• List of parameters if error was caused by erroneous action parameters

If an action cannot be completed because of external factors (e.g., no load at expected
position), the actionId should be referenced.

7.2 Format of parameters

Parameters for errors, information and actions are designed as an array of JSON objects with
key-value pairs.

Field data type description

actionParameter
{

JSON object actionParameter for the indicated action, e.g., deviceId,
loadId, external triggers.

key string The key of the parameter.

value} One of:
array,
boolean,
number,
string,
object

The value of the parameter that belongs to the key.

VDA 5050 Version 2.1.0, May 2024 67

Copyright 2024

Examples for the actionParameter of an action "someAction" with key-value pairs for
stationType and loadType:

"actionParameters":[{"key":"stationType", "value": "floor"}, {"key":"weight", "value": 8.5},
{"key": "loadType", "value": "pallet_eu"}]

The reason for using the proposed scheme of "key": "actualKey", "value": "actualValue" is to
keep the implementation generic. The "actualValue" can be of any possible JSON data type,
such as float, bool, and even an object.

8 Glossary

8.1 Definition

Concept Description

Free navigation
AGV

Vehicles that use a map to plan their own path.
The master control sends only start and destination coordinates.
The vehicle sends its path to the master control.
When connection to the master control is broken, the vehicle is able
to continue its journey.
Free-navigation vehicles may be allowed to bypass local obstacles.
It may also be possible that a fine adjustment of the
receiving/dispensing position are made by the vehicle itself.

Guided vehicles
(physical or virtual)

Vehicles that get their path sent by the master control.
The calculation of the path takes place in the master control.
When communication to the master control is broken off, the vehicle
terminates its released nodes and edges (the "base") and then
stops.
Guided vehicles may be allowed to bypass local obstacles.
It may also be possible that fine adjustments of the
receiving/dispensing position are made by the vehicle itself.

Central map The maps that will be held centrally in the master control.
This is initially created and then used.

VDA 5050 Version 2.1.0, May 2024 68

Verband der Automobilindustrie

The German Association of the Automotive Industry (VDA) consolidates more

than 650 manufacturers and suppliers under one roof. The members develop

and produce cars and trucks, software, trailers, superstructures, buses, parts

and accessories as well as new mobility offers.

We represent the interests of the automotive industry and stand for modern,

future-oriented multimodal mobility on the way to climate neutrality. The VDA

represents the interests of its members in politics, the media, and social groups.

We work for electric mobility, climate-neutral drives, the implementation of

climate targets, securing raw materials, digitization and networking as well as

German engineering. We are committed to a competitive business and

innovation location. Our industry ensures prosperity in Germany: More than

780,000 people are directly employed in the German automotive industry.

The VDA is the organizer of the largest international mobility platform IAA

MOBILITY and of IAA TRANSPORTATION, the world's most important

platform for the future of the commercial vehicle industry.

Publisher German Association of the Automotive Industry

Behrenstraße 35, 10117 Berlin

www.vda.de/en

 German Bundestag Lobby Register No.: R001243

EU Transparency Register No.: 9557 4664 768-90

Copyright German Association of the Automotive Industry

 Reprint, also in extracts, is only permitted,

if the source is stated.

Version Version 2.1.0, May 2024

http://www.vda.de/en

